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Abstract 

Background: Eosinophilia is not an uncommon clinical finding. However, diagnosis of its cause can be a dilemma 
once common culprits, namely infection, allergy and reactive causes are excluded. Primary immunodeficiency disor-
ders (PID) are among known differentials of eosinophilia. However, the list of PIDs typically reported with eosinophilia 
is small and the literature lacks an inclusive list of PIDs which have been reported with eosinophilia. This motivated us 
to review the literature for all PIDs which have been described to have elevated eosinophils as this may contribute to 
an earlier diagnosis of PID and further the understanding of eosinophilia.

Methods: A retrospective PubMed, and Google Scholar search using the terms “eosinophilia” and “every individual 
PID” as classified by Expert Committee of the International Union of Immunological Societies with the limit of the 
English language was performed. Results were assessed to capture case(s) which reported eosinophilia in the context 
of PID conditions. Absolute eosinophil counts (AEC) were retrieved from manuscripts whenever reported.

Results: In addition to the typical PID conditions described with eosinophilia, we document that MHC class II 
deficiency, CD3γ deficiency, STAT1 deficiency (AD form), Kostmann disease, cyclic neutropenia, TCRα deficiency, 
Papillon-Lefevre syndrome, CD40 deficiency, CD40L deficiency, anhidrotic ectodermal dysplasia with immune defi-
ciency, ataxia-telangiectasia, common variable immunodeficiency disorders (CVID), Blau syndrome, CARD9 deficiency, 
neonatal onset multisystem inflammatory disease or chronic infantile neurologic cutaneous and articular syndrome 
(NOMID/CINCA), chronic granulomatous disease, MALT1 deficiency and Roifman syndrome have been noted to have 
elevated eosinophils. Severe eosinophilia (>5.0 × 109/L) was reported in Omenn syndrome, Wiskott Aldrich syndrome, 
ADA deficiency, autoimmune lymphoproliferative syndrome, immunodysregulation polyendocrinopathy enteropathy 
X-linked, STAT3 deficiency, DOCK8 deficiency, CD40 deficiency, MHC II deficiency, Kostmann disease, Papillon-Lefevre 
syndrome, and CVID.

Conclusions: This literature review shows that there is an extensive list of PIDs which have been reported with 
eosinophilia. This list helps clinicians to consider an extended differential diagnoses when tasked with exclusion of PID 
as a cause for eosinophilia.
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Background
Eosinophils are primarily tissue-dwelling cells found 
in relatively low numbers within the circulation (less 
than 400/mm3) [1–3]. Eosinophilia can be secondary to 
varied conditions as recently reviewed by Curtis et  al. 
[2], and can be classified based on absolute eosinophil 

count (AEC) as mild: 0.5–1.5  ×  109/L, moderate: 1.5–
5.0 × 109/L, or severe: >5.0 × 109/L [4].

Primary immunodeficiency is a known differential 
diagnosis of eosinophilia that needs to be ruled out, 
particularly in pediatrics, when more common differ-
entials such as infection, allergy and reactive causes 
are excluded [2, 5–7]. Eosinophilia in association with 
PIDs is well known; however, few PIDs are typically 
described in association with eosinophilia [5–9]. Most 
recent reviews of PIDs with eosinophilia include Wiskott 
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Aldrich syndrome (WAS), hyper IgE syndromes (HIES), 
Omenn syndrome (OS), immunodysregulation polyen-
docrinopathy enteropathy X-linked (IPEX) syndrome, 
and Netherton’s syndrome. Moreover, ZAP70 deficiency, 
autoimmune lymphoproliferative syndrome (ALPS), 
selective IgA deficiency, and adenosine deaminase (ADA) 
deficiency have also appeared in differential diagnosis of 
eosinophilia.

Knowledge of the PIDs reported to have eosinophilia 
could assist clinicians assessing patients with eosino-
philia when PID is considered. Given the current small 
list of PIDs reported with eosinophilia, we considered if 
a more comprehensive list could be generated by review-
ing the literature. This review aimed to primarily capture 
PIDs reported with eosinophilia, and secondarily deter-
mine degree of eosinophilia where possible. Finally, some 
possible mechanisms driving eosinophilia in PID are 
highlighted.

Methods
A review of the literature was undertaken to generate a 
list of PIDs reported with eosinophilia and to attempt to 
determine the degree of eosinophilia. PubMed and sub-
sequently Google Scholar searches with English language 
filter were performed using the terms “eosinophilia” 
AND “every individual PID” as classified by Expert Com-
mittee of the International Union of Immunological 
Societies (IUIS) [9]. Abstracts of the PubMed results, 
and the title and the text of Google Scholar results were 
reviewed to find any case reports, case series or review 
articles, in which case eosinophilia and absolute eosino-
phil counts (AEC) were sought in the manuscript. More-
over, references of review articles and case series were 
assessed for any additional cases. This led to inclusion 
of CHD7 and CARD11 as genetic defects of OS [10, 11], 
and PGM3 deficiency [6, 12]. Lastly, Roifman syndrome 
[13, 14] and MALT1 deficiency [15] were included due 
to authors’ knowledge that they have been reported with 
eosinophilia.

As the primary goal was to capture the PIDs reported 
with eosinophilia we did not cite every article which 
describes eosinophilia. Once a condition was captured, 
we aimed to cite references with reported AEC but not 
necessarily all references which described eosinophilia 
for that condition. No minimum number of reports was 
required to be included in this review.

Results
Here, PIDs reported in association with eosinophilia are 
briefly described. The cumulative range of eosinophilia in 
each condition and the retrieved AECs with their sources 
are respectively compiled in Table 1 and Additional file 1: 

Table S1. Online Mendelian Inheritance in Man (OMIM) 
numbers are provided in brackets after each condition.

Combined immunodeficiencies
ADA deficiency (#102700)
ADA deficiency leads to accumulation of toxic deoxy-
ATP within cells and immunodeficiency [16–18]. 
Late-onset ADA deficiency has been reported with 
eosinophilia [18–22].

CD3γ deficiency (#186740)
CD3γ deficiency, unlike CD3 δ, ε, and ζ deficiency, tends 
to present as combined immunodeficiency with variable 
onset [23, 24]. Autoimmunity, normal protein-specific 
antibody responses, high IgE, eosinophilia, and atopic 
eczema have been described in CD3γ deficiency [23–25]

ZAP70 deficiency (#269840)
ZAP70 is a central signalling molecule in thymic selec-
tion of the CD4 and CD8 lineages [26, 27]. Patients may 
present with an atopic dermatitis-like skin rash, eosino-
philia and elevated IgE [28–30].

MHC class II deficiency (#209920)
MHC class II plays a pivotal role in CD4 T cell development 
and function [31, 32]. Reduced CD4+T cells, hypogamma-
globulinemia, and an inability to mount immune responses 
are among the immunologic characteristics [32]. Eosino-
philia has been reported in few cases [31, 33].

TCRα deficiency (#615387)
TRAC mutation interferes with a functional TCRαβ 
receptor [34–36]. Eosinophilia, frequently recurring 
infections, failure to thrive, autoimmunity, eczema, orga-
nomegaly, and elevated IgE have been reported [37].

MALT1 deficiency (#604860)
MALT1 is a regulator of NF-κB signalling. Normal to 
very low B cells, normal immunoglobulin with chroni-
cally elevated IgE are described [38, 39]. Eosinophilia was 
noted in this condition [15].

Omenn syndrome (OS; #603554)
OS is characterized by erythroderma, lymphadenopathy, 
eosinophilia, and profound immunodeficiency in infants 
[11, 40, 41]. Hepatosplenomegaly, hypogammaglobuline-
mia with elevated IgE are among other features [11, 42]. 
The OS genetic defects reported to be associated with 
eosinophilia include: RAG1/RAG2, ARTEMIS, ADA, 
CHD7, RMRP [43, 44], LIG4, IL-2RG, IL7RA, and CARD11 
[10]. Defects in AK2 were not included here as the only OS 
due to AK2 defect did not comment on eosinophilia [45]. 
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Table 1 Primary immunodeficiency disorders associated with eosinophilia

a Conditions with severe eosinophilia
b The absolute eosinophil count(s) with further details and source references in Additional file 1: Table S1
c TNFSF6 or CASP8 or CAS10

PID Genetic defect/subtype (s) Functional defect Inheritance AEC range (× 109/L)b

Combined immunodeficiencies

 ADA Deficiency Late onset ADA Elevated lymphotoxic metabolites AR 0.8–4.7

 ZAP70 deficiencya ZAP70 Intracellular signaling abnormality AR 9.5

 CD3γ deficiencya CD3G T-cell receptor expression defect AR 0.2–0.7

 MHC II deficiencya RFXANK Impaired antigen presentation by APCs AR 3–10

 TCR α deficiency TRAC T-cell receptor generation AR 0.08–2.5

 MALT1 deficiency MALT1 NF-kB activation failure AR Not specified

 OSa RAG 1/2 T-cell receptor generation abnormality AR 0.1–21.8

IL7RA Defect in IL-7 receptor α chain AR 6.49

IL-2RG Cytokine receptor signaling abnormality AR 15.56

22q11.2 DiGeorge syndrome AD 1.36– >15

CHD7 Chromatin organization defects AR 1.3–4.1

LIG4 DNA DSB repair defect AR 2.12

ADA Elevated lymphotoxic metabolites AR 0.85–1.73

RMRP Mitochondrial RNA processing defects AR Not specified

CARD11 TCR/BCR induced NF-kB activation failure AR Not specified

ARTEMIS DNA repair defect AR Not specified

Combined immunodeficiencies with associated or syndromic features

 Ataxia-Telangiectasia ATM DNA break repair defect AR Not specified

 WASa WAS Actin cytoskeleton abnormality AR 0–8.32

 NS SPINK5 Pro-Th2 and stratum corneum detachment AR Not specified

 HIES STAT3a Intracellular signaling abnormality AD 0.029–54.81

Tyk2 Cytokine signaling abnormality AR 0.29–0.8

DOCK8a Cytoskeletal organization defects AR 0.245–37.88

Predominantly antibody deficiencies

 CVID Unknown Unknown Variable 0.385–1.562

 CD40L deficiency CD40L Defects in Ig isotype switching XL 0.5–1.5

 CD40 deficiencya CD40 Defects in Ig isotype switching AR 0.8–13.5

 Selective IgA deficiency Unknown 0.672

Diseases of immune dysregulation

 IPEXa FOXP3 Dysfunction of regulatory Tcells XL 0.236–8.423

 ALPSa TNFRSF6 Failure of apoptosis AD 1.33–35.46

Otherc Failure of apoptosis Not specified

Congenital defects of phagocyte number or function or both

 Kostmann disease HAX1 Control of apoptosis AR 0.09–1.30

 Cyclic neutropenia ELANE “Gain-of-function” in the neutrophil granule AD Not specified

 STAT1 deficiencya STAT1 IFN-γ signalling defect AD 11.1

 PLS FPR1 Defective chemotaxis of PMNs AR 0.96–2.156

 CGD CYBB Neutrophil oxidative burst deficiency XL 0.786

Defects of innate immunity

 EDA-ID NEMO Failure of NEMO-induced NF-κB activation XL 1.45

 CARD9 deficiency CARD9 Selective defect in defense against fungal infection AR Not specified

Autoinflammatory disorders

 NOMID/CINCA CIAS1 Defect in regulation of inflammation and apoptosis AD 0.728–3.441

 Blau syndrome NOD2 NF-κB activation causing excess inflammatory cytokine AD Not specified

Not classified by IUIS

 PGM3 deficiency PGM3 Possibly signalling defects AR 0–3.6

 Roifman syndrome RNU4ATAC Disrupted minor intron splicing AR Not specified
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DiGeorge syndrome has also been rarely reported to pre-
sent with OS and eosinophilia [46, 47].

Combined immunodeficiencies with associated or 
syndromic features
Wiskott–Aldrich syndrome (WAS; #301000)
WAS classically presents with the triad of thrombocy-
topenia, eczema and recurrent infections [48, 49]. It is 
associated with elevated IgE and IgA, inability to gener-
ate antibody against polysaccharide antigens, and eosino-
philia [49–51]. A review of 154 patients found that 31 % 
had eosinophilia [50].

Ataxia‑telangiectasia (#208900)
Ataxia-telangiectasia is characterized by progressive 
neurological abnormalities, radiosensitivity, and vari-
able immunodeficiency [52]. Laboratory findings often 
include hypogammaglobulinemia, lymphopenia, and 
reversed CD4/CD8 ratio [52]; eosinophilia has also been 
reported in few cases [53, 54].

Hyper‑IgE syndromes (HIES)
AD‑HIES (Job’s syndrome; #147060) AD-HIES is distin-
guished by its connective tissue, skeletal system, and den-
tition involvements in addition to recurrent infections, 
atopic dermatitis, elevated IgE, and eosinophilia [55]. 
STAT3 is the key to signal transduction of many cytokines, 
and memory B cells generation and mutations are causa-
tive [56–58]. Eosinophilia is noted in 80  % of AD-HIES 
patients [59]. A gain of function of STAT3 (p.Y640F) has 
recently been identified in lymphocytic variant of hypere-
osinophilic syndrome [60]. Therefore STAT3 appears to 
have an important role in eosinophil regulation.

DOCK8 deficiency (#243700) DOCK8 deficiency 
accounts for the majority of AR-HIES [61–64] and is char-
acterized by extensive cutaneous viral infections (herpes 
simplex, varicella zoster, human papillomavirus, and 
molluscum contagiosum), central nervous system (CNS) 
complications, elevated IgE, and eosinophilia [61, 65, 66].

Tyk2 deficiency (#611521) To date there have been few 
reported cases of Tyk2 deficiency [67, 68]. Only the first 
patient had features of HIES including atopic dermatitis, 
eosinophilia, and high serum IgE levels [69]. However, 
mycobacterial and/or viral infections have been the most 
common phenotype among these patients [67, 68]. Eosin-
ophilia is described in 2 of 8 total reported cases [68, 69].

Comel–Netherton syndrome (NS; #256500)
NS presents with atopic manifestations, an ichthyotic 
skin condition, and bamboo hair shaft defects due to 
SPINK5 mutations [70, 71]. Elevated IgE and eosinophilia 

are frequently seen [6, 70–74]. Smith et al. showed eosin-
ophilia in 7 out of 44 patients with NS [75].

Predominantly antibody deficiencies
Common variable immunodeficiency disorders (CVID)
CVID is one of the more common immunodeficiencies with 
variable phenotypes mostly presents by recurrent infec-
tions, and low IgG and IgA and/or IgM [9, 76, 77]. There are 
few cases of CVID with eosinophilia [78–80]; however, it is 
difficult to determine prevalence of eosinophilia in CVID.

CD40 ligand (CD40L) deficiency (#300386)
CD40L deficiency characterized by recurrent infections, 
low IgG and IgA, and normal to increased IgM [81]. 
Eosinophilia has been described [82–84], and in one 
patient it was reported along with Cryptosporidium par‑
vum and Cryptococcus neoformans infections [84].

CD40 deficiency (#109535)
CD40 deficiency is clinically indistinguishable from 
CD40L deficiency [85]. Eosinophilia has been described 
with Cryptosporidium infection [86, 87].

Selective IgA deficiency (#137100)
IgA deficiency is usually asymptomatic and characterized 
by a decreased or absent level of serum IgA with normal 
IgG and IgM [9, 88, 89]. It is considered on differential 
diagnoses of secondary eosinophilia [8, 90, 91].

Diseases of immune dysregulation
Immunodysregulation polyendocrinopathy enteropathy 
X‑linked (IPEX; #304790)
IPEX is a regulatory T (Treg) cell defect typically presents 
early in life [92, 93]. T cells are quantitatively normal with 
normal proliferative responses to mitogens and antigens; 
however, Treg cells are markedly reduced or absent [94–
96]. High IgE and eosinophilia are frequently reported in 
IPEX patients [92, 97, 98].

ALPS‑FAS (#601859)
ALPS-FAS is a disorder of lymphocyte homeosta-
sis due to FAS receptor protein [99, 100]. Pathog-
nomonic elevated double-negative T lymphocytes 
(TCRαβ+CD4−CD8−) [101–103], anemia, thrombocy-
topenia, and eosinophilia are among the laboratory find-
ings [99, 100, 104, 105]. In a report of 68 patients with 
ALPS, 11 patients were found to have eosinophilia [104].

Congenital defects of phagocyte number or function or 
both
SCN3 (Kostmann disease; #610738)
Kostmann disease typically presents with recurrent bac-
terial infections from early infancy, severe non-cyclic 
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neutropenia, maturation arrest of myeloid differentiation, 
and compensatory monocytosis and eosinophilia [106–
109]. Eosinophilia is considered to be a component of the 
classic presentation.

Cyclic neutropenia (#162800)
Cyclic neutropenia presents with recurrent fever, oral 
ulcers, recurrent oropharyngeal infections and periodic 
neutropenia [106]. In a review by Lang et al. eosinophilia 
was seen in 8.6  % of pediatric and 3.7  % of adult cases 
[110].

Papillon‑Lefevre syndrome (PLS; #245000)
PLS is characterized by diffuse palmoplantar hyper-
keratosis, rapid progressive periodontitis involving both 
deciduous and permanent dentition [111, 112]. Labora-
tory findings include decreased peripheral CD3 and CD4, 
defective burst test, as well as few cases of eosinophilia 
[111–113].

X‑linked chronic granulomatous disease (CGD; #306400)
CGD is characterized by susceptibility to catalase-pos-
itive bacterial and fungal infections [114]. One CGD 
patient with mild eosinophilia despite taking prednisone 
every other day for eosinophilic colitis was reported 
[115]. There have also been reports of eosinophilia and 
eosinophilic inflammatory conditions in CGD patients 
including eosinophilic gastroenteritis and eosinophilic 
cystitis [115, 116].

STAT1 deficiency (AD form) (#600555)
Partial STAT1 deficiency can present as Mendelian Sus-
ceptibility to Mycobacterial Disease due to IFN-γ signal-
ing defects [117–119]. There is one case with persistent 
leukocytosis and hypereosinophilia in a 2  month of age 
child who later was diagnosed as STAT1 deficiency [118].

Defects of innate immunity
Anhidrotic ectodermal dysplasia‑immune deficiency (EDA‑ID; 
NEMO deficiency; #300248)
NEMO deficiency has been reported in various diseases 
including ectodermal dysplasia, incontinentia pigment, 
and severe life threatening pyogenic and mycobacte-
rial infections [120–122]. Most patients have low serum 
IgG levels, with variable levels of other immunoglobulin 
isotypes [120, 123]; eosinophilia has also been reported 
[122–125].

CARD9 deficiency (#212050)
CARD9 is a cytosolic adaptor protein involved in differ-
entiation of naïve T cells to TH17 [126]. Its defects are 
associated with recurrent Candida infections as well 

as susceptibility to deep dermatophytosis [126, 127]. 
Eosinophilia and elevated IgE level have been reported 
[127–129].

Autoinflammatory disorders
Neonatal onset multisystem inflammatory disease (NOMID) 
or chronic infantile neurologic cutaneous and articular 
syndrome (NOMID/CINCA; #607115)
NOMID/CINCA is characterized by the triad of rash, 
CNS involvements and arthropathy. Leukocytosis, 
thrombocytosis and eosinophilia, as well as elevated 
acute-phase reactants are among the laboratory findings 
[130–132].

Blau syndrome (BS; #186580)
BS is a non-caseating granulomatous disease charac-
terized by triad of uveitis, arthritis, and dermatitis of 
varying morphology [133, 134]. Hypercalcemia, hyper-
calciuria, elevated angiotensin converting enzyme level, 
leukopenia, and eosinophilia are described laboratory 
findings [135–139].

Not classified by IUIS
PGM3‑deficiency
PGM3 deficiency presents with hyper-IgE–like features, 
atopy, autoimmunity and neurocognitive impairment [6, 
12, 67, 140–142]. PGM3 is involved in posttranslational 
alterations necessary for functioning of many proteins 
and lipids [141]. Eosinophilia, inverted CD4/CD8 ratio, 
and increased IgE level were described [142].

Roifman syndrome
Roifman syndrome is characterized by bone dyspla-
sia, growth retardation, retinal dystrophy and humoral 
immunodeficiency [13, 14]. In the original description of 
Roifman syndrome 3/4 patients had eosinophilia [13].

Discussion
Evaluation of possible PID in a patient with eosinophilia
Many patients with eosinophilia will be explained by sec-
ondary causes such as parasitic infections, allergies, or 
hematological problems which are well reviewed else-
where [2, 5–7]. If PID is being considered as a potential 
cause of eosinophilia, a wide range of PIDs have been 
associated with eosinophilia including disorders of Tcell 
development and signalling, cytokine signalling, cytoskel-
etal formation, autoimmunity, thymic development, innate 
immunity, humoral immunity and phagocytic function.

The history and physical examination may reveal clues 
which lead to likely diagnoses and further immune evalu-
ation. Despite lack of sensitive and or specific signs and 
symptoms in respect to PIDs, many red flags including 
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specific patterns of infections, autoimmunity, need for 
intravenous antibiotics, and prolonged oral antibiot-
ics use with little effects have been previously reviewed 
[143–145]. Additionally, a detailed practice parameter 
for the evaluation of PID was recently published [146]. 
A patient history including infections, autoimmunity, 
malignancy and a review of systems including the pres-
ence of constitutional symptoms, allergies, and diarrhea 
may assist in deciding the likelihood of an immunodefi-
ciency. A family history including consanguinity, early 
deaths and malignancy will also assist in evaluating 
for serious causes. The physical exam may note growth 
parameters, dysmorphism, skin abnormalities, thrush, 
lymphatic tissue, skin/nail abnormalities and neurologi-
cal features.

A phenotypic guide to immunological conditions with 
eosinophilia has been published [6] which contains many 
of the conditions in this review. Here we present a com-
plimentary approach which focuses on the severity of the 
conditions followed by some diagnostic clues (Fig. 1). After 
a detailed history and physical exam, quantitative immu-
noglobulins could be ordered if a clinical concern of PID 
exists. Laboratory results of a complete blood count (CBC) 
and differential will already be available if the reason for 
referral is eosinophilia. If the patient is lymphopenic or 
hypogammaglobulinemic then a work up for PID inde-
pendent of the eosinophilia and comprehensive resources 
are recommended [146, 147]. A patient with SCID/Omenn 
syndrome presents a medical emergency so active consid-
eration of these life threatening conditions is warranted in 
an infant. After considering SCID/Omenn syndrome, other 
significant or transplantable conditions could be consid-
ered such as WAS, IPEX, DOCK8 deficiency, EDA-ID and 
CD40L/CD40 deficiency and others. Next, consideration 
of the hyper IgE syndromes is suggested because they are 
well known to be associated with eosinophilia and some 
can be severe. Finally, a consideration of the other reported 
causes may be needed depending on the circumstances and 
whether an alternate diagnosis has been achieved.

Limitations of this study
By the nature of a review of published literature, we 
are limited by what authors have reported. There may 
be some PIDs with eosinophilia which were not cap-
tured due to reporting omission. This limitation is not 
a weakness because the purpose was to see the basis of 
the assertion that PID should be considered in a patient 
with eosinophilia and to catalogue the previously 
reported conditions. Our strategy did allow the capture 
of even single case reports and documented many PIDs 
not typically thought to have been noted with eosino-
philia but may have missed some diseases including 

those which may list the laboratory values in a table in 
a way not captured by our search, or in non-English lan-
guage journals.

Determining the true frequency of eosinophilia in indi-
vidual PID conditions is also subject to reporting omis-
sions and biases. We have provided some information 
about how commonly eosinophilia has been noted such 
as from case series of patients, but we cannot provide an 
exact frequency with this methodology.

The AEC is not described for every PID and there-
fore the degree and the range of eosinophilia is derived 
from a low number of cases. The AEC range reported in 
Table 1 is the cumulative results of the cases which men-
tioned eosinophil count(s). They are intended to serve as 
a guide when considering severe eosinophilia. The degree 
of eosinophilia can be markedly varied in each PID. As 
summarized in Table  1 and reported in detail in Addi-
tional file  1: Table S1, there is a broad variability in the 
degree of eosinophilia associated with each individual 
PID and or subtype(s). Given the variability of the degree 
of eosinophilia this is unlikely to be of major diagnostic 
assistance, but severe eosinophilia is less common and 
may have more diagnostic utility.

Conclusions
There are more PIDs documented with eosinophilia than 
typically recognized. Eosinophilia has been reported 
with many primary immunodeficiencies including severe 
combined, combined, humoral, phagocytic and innate 
immunodeficiencies. Based on the AEC derived from the 
literature:

  • Severe eosinophilia was seen in OS, WAS, ALPS, 
STAT3 deficiency, DOCK8 deficiency, IPEX, CD40 
deficiency, ZAP70 deficiency, STAT1 deficiency (AD 
form) and MHC class II deficiency.

  • Lesser degree of eosinophilia was described in 
ADA deficiency, CD3γ deficiency, TCRα deficiency, 
MALT1 deficiency, Ataxia-telangiectasia, PGM3 
deficiency, Tyk2 deficiency, NS, CVID, IgA defi-
ciency, CD40L deficiency, SCN3, cyclic neutropenia, 
PLS, CGD, EDA-ID, CARD9 deficiency, NOMID/
CINCA, Blau syndrome, and Roifman syndrome.

We agree with previous reviews that PIDs should be 
considered in patients with eosinophilia, especially chil-
dren, when typical causes have been ruled out [2, 5–8]. 
This list of reported PID conditions with eosinophilia 
will help with the assessment of such patients. Eosino-
philia can be driven by varied processes including imbal-
ances in Th1/Th2, cytokine derangements, infections and 
medications.
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Additional file

Additional file 1: Table S1. Absolute eosinophil counts (AEC) in Primary 
Immunodeficiency Diseases (PID): number of patients reported and refer-
ences cited.

Abbreviations
PID: primary immunodeficiency disorder; WAS: Wiskott Aldrich syndrome; AEC: 
absolute eosinophil count; IPEX: immunodysregulation polyendocrinopathy 
enteropathy X-linked; OS: Omenn syndrome; ADA: adenosine deaminase; 
IUIS: International Union of Immunological Societies; ALPS: autoimmune 

Clinical consideration of PID in a 
patient with eosinophilia

Infant with suspicion 
for SCID or

Omenn syndrome

MEDICAL 
EMERGENCY:

Contact 
immunologist for 
further work up

Any age: Severe +/-
opportunistic infections, 
low IgG or lymphopenia

PID evaluation
(this step should ensure 

detection of many combined 
immunodeficiencies reported 

and unreported as well as 
CVID)

R/O life threatening PIDs
OR

Clear indication for PID evaluation 
independent of the eosinophilia

Eczematous

History
Physical examination
CBC with differential

Consider IgG, IgA, IgM, IgE 

Consider potentially 
transplantable PIDs 
with eosinophilia

Consider other PIDs reported 
with eosinophilia

No

No

No

Ectodermal dysplasia 

• EDA-ID

Colitis

• IPEX
• MALT1 deficiency
• CGD
• Wiskott-Aldrich syndrome
• EDA-ID

Abscesses, severe 
bacterial infections
• Neutrophil disorders
• HIES

Severe cutaneous viral infections
• DOCK8 deficiency

Endocrine autoimmunity
• IPEX

Low platelets
• Wiskott-Aldrich syndrome

High or normal IgM  (+/- low IgG)
• CD40 deficiency
• CD40L deficiency
• EDA-ID
• Ataxia telangiectasia

Food allergies
• DOCK8 deficiency
• Comel–Netherton syndrome
Ichthyosis
• Comel–Netherton syndrome
Fractures
• STAT3 deficiency
• MALT1 deficiency
Neurocognitive impairment
• PGM3 deficiency

Male
• IPEX
• Wiskott-Aldrich syndrome

Consider 
calculating NIH 
score to consider 

STAT3

Ataxia+/- telangiectasia 
• Ataxia telangiectasia

Bronchiectasis
• MHC class II deficiency
• Humoral immune defects

Periodic fevers
• NOMID/ CINCA
• Neutrophil defects

Microcephaly
• Roifman syndrome

Candida infections
• CARD9 deficiency
• CGD
Mycobacterial infections
• STAT1 (AD form)
• EDA-ID
Palmoplantar pustulosis
• Papillon-Lefevre syndrome

Granulomatous disease 

• Blau syndrome
• CGD

Cytopenias
• ALPS
• ADA deficiency
• Wiskott-Aldrich syndrome
• CD3γ deficiency
• MHC class II deficiency
• IPEX

Low IgA
• Selective IgA deficiency

History of malignancy
• STAT3 deficiency
• DOCK8 deficiency
• PGM3 deficiency
• ALPS
• Wiskott-Aldrich syndrome

Other PIDs reported with Eosinophilia

Yes

Yes

No

dermatitis +/- high IgE:
Consider HIES and similar

Fig. 1 A Severity-Based Approach to Assessing for PIDs which have been reported with Eosinophilia. The initial approach presented here is based 
on the history and physical exam and simple laboratory tests. This assessment may reveal independent indications for PID evaluation independ-
ent of eosinophilia. In an infant we suggest a low threshold to consider SCID and Omenn syndrome. A consideration of transplantable/severe PIDs 
is presented next with some phenotypic clues. Then HIES and similarly presenting conditions may be considered in patients with eczematous 
dermatitis ± high IgE including performing the NIH score for STAT3 deficiency. Finally, phenotypic clues for other PIDs which have been reported 
with eosinophilia are listed. This approach does not suggest to evaluate all patients for all disorders but to begin with considering severe causes and 
then let the phenotype guide investigations for particular conditions. A few conditions, such as WAS and STAT3, appear in multiple locations due to 
variable presentations
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lymphoproliferative syndrome; TCR: T cell receptor; HIES: hyper-IgE syndromes; 
NS: Comel–Netherton syndrome; CGD: X-linked chronic granulomatous 
disease; EDA-ID: anhidrotic ectodermal dysplasia-immune deficiency; PLS: 
Papillon-Lefevre syndrome; CNS: central nervous system; CVID: common vari-
able immunodeficiency disorders; NOMID/CINCA: neonatal onset multisystem 
inflammatory disease or chronic infantile neurologic cutaneous and articular 
syndrome; CBC: complete blood count.
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