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Abstract

and immune response.

Whole genome methylation analysis, Hypermethylation

Staphylococcal enterotoxins may influence the pro-inflammatory pattern of chronic sinus diseases via epigenetic
events. This work intended to investigate the potential of staphylococcal enterotoxin B (SEB) to induce changes in the
DNA methylation pattern. Nasal polyp tissue explants were cultured in the presence and absence of SEB; genomic
DNA was then isolated and used for whole genome methylation analysis. Results showed that SEB stimulation
altered the methylation pattern of gene regions when compared with non stimulated tissue. Data enrichment
analysis highlighted two genes: the IKBKB and STAT-5B, both playing a crucial role in T- cell maturation/activation
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Background

Staphylococcus aureus enterotoxins acting as superantigens
are known biological factors amplifying the pro-inflam-
matory patterns of upper airway inflammatory diseases,
specifically chronic rhinosinusitis with nasal polyposis
(CRSWNP) [1,2]. Recently, it has been demonstrated
that bacterial infection and viral superantigens may lead
to epigenetic deregulations affecting host cell functions
[3]. This study aimed to investigate the potential of S.
aureus enterotoxin B (SEB) to induce changes in the
gene DNA methylation pattern in inflamed nasal tissue.

Subjects and methods

A detailed description of the procedures followed in the
study is provided in the Additional file 1. Briefly, nasal
polyp tissues from 3 patients with chronic rhinosinusitis
and nasal polyposis were fragmented and homogenized as
described previously [4] and subsequently cultured during
24 h in the absence or presence of 0,5 pg/ml of SEB

* Correspondence: Claudina.Pereznovo@UGent.be

Equal contributors

'Upper Airways Research Laboratory, Department of Otorhinolaryngology,
Ghent University Hospital, De Pintelaan 185, Ghent B-9000, Belgium

Full list of author information is available at the end of the article

( BiolMed Central

(Sigma-Aldrich, MO, United States). After stimulation,
genomic DNA was isolated and used for a whole
genome methyl-CpG-binding domain2 (MBD2)- based
DNA methylation analysis [5]. The sequence reads ob-
tained were then mapped using BOWTIE [6] and the data
were summarized using a MethylCap kit specific “Map
of the Human Methylome” (www.biobix.be) containing
1,518,879 potentially methylated sites termed methylation
cores (MCs) as shown in Figure 1. Methylation was defined
as the peak coverage in the MCs and was analyzed with
the software package "R" version 2.11.1.

Results

A summary of the methylation data and analysis is pro-
vided in the repository file 1. In order to identify the
genes which methylation status was affected by SEB
stimulation, the obtained methylation cores (MCs) were
ranked by “Likelihood Treatment” in descending order
and an arbitrary "cut-off" was applied to select the 200
top differentially methylated genes. This ranking showed
that stimulation with SEB mainly resulted in de novo
hypermethylation (130 MCs) rather than in hypomethyla-
tion (70 MCs) and as expected, the methylation changes
mainly occurred at intragenic regions (introns and exons)
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Figure 1 Example of the visual representation of the results from MBD2 DNA methylation based analysis. The figure shows the
methylation cores (MC) for the differentially methylated region (exon 22) of the gene IKBKB on the genome browser "The Hitchhiker's guide to
the Genome" (www.biobix.be). The height of the black peaks shows the methylation level in that specific region in samples cultured in medium

and with staphylococcal enterotoxin B (SEB).

and to a lesser extend at the promoter or transcription
start sites, as there were many more exonic and intronic
MC:s than promoter MCs in the entire map (Figure 2).
The 200 MCs primarily selected were then filtered
using a “Likelihood Treatment” cut-off of 0.4 or more
which translates to an estimated 40% probability that the
MC is differentially methylated between samples treated
or not with SEB. This cut-off value was used due to the low
likelihood treatment values and low confidence obtained as
result of the low coverage. This process provided a list
of 43 genes exhibiting changes in the methylation state
after 24 h culture with SEB (Table 1). From this list, 33
genes were hypermethylated while 10 genes showed

hypomethylation. Three genes showed hypermethylations
at promoter regions, and 18 and 12 genes at the intron
and exon regions, respectively. Hypomethylation events
were less frequent and they occurred at exonic regions in
9 genes, at introns in 1 gene and none at the promoter
site (Table 1). Additionally, changes in the methylation
status in other regions of these genes were also observed,
but they did not pass the likelihood treatment cut-off due
to low coverage; this may be solved in future studies as
high coverage becomes affordable due to declining se-
quencing costs.

These 43 top ranking genes were then selected for
enrichment analysis in the Reactome database using the
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Figure 2 Distribution of the genomic regions showing differential methylation cores. The figure shows the percentage of genes showing
different methylation cores in nasal polyp tissue cultures stimulated with S. aureus enterotoxin B (SEB) when compared with non-stimulated tissue.
Most of the methylation changes occurred in intragenic regions (exons and introns) and in less extend at the promoter genes site.
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Table 1 Genes with different methylation status after stimulation with SEB
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Methylation Location Gene Chr Likelihood Ensemble Methylation Methylation
status accession score TCM score SEB

Hypermethylation Promoter CTSLL2 10 0.599515 ENSG00000224036 1 7

Y_RNA 6 0.595036 ENSG00000201555 1 8

AC022026.3 10 0.589686 ENSG00000213731 0 6

Intron CHDS5 1 0.887026 ENSG00000116254 0 8

STAB2 12 0.644866 ENSG00000136011 1 8

ROBO1 3 053597 ENSG00000169855 0 5

AJAP1 1 0512208 ENSG00000196581 1 6

TTLLT 22 04962 ENSG00000100271 0 4

GLT1D1 12 0472979 ENSG00000151948 1 8

MADI1L1 7 047049 ENSG00000002822 0 5

HEATRSB 2 04673 ENSG00000008869 0 4

LGMN 14 0459486 ENSG00000100600 0 5

FAM59A 18 0458542 ENSG00000141441 0 4

STAT5B 17 0458148 ENSG00000173757 0 5

NKD1 16 0457063 ENSG00000140807 1 7

SLC25A24 1 0431776 ENSG00000085491 1 7

AC073343.1 7 0430122 ENSG00000228010 1 6

TMEM138 M 0412654 ENSG00000149483 1 6

MPRIP 17 0411674 ENSG00000133030 1 7

GAA 17 040881 ENSG00000171298 1 8

RFX3 9 0407894 ENSG00000080298 1 6

Exon ADAMTS16 5 0.552893 ENSG00000145536 1 10

IKBKB 8 0533067 ENSG00000104365 1 7

ZNF541 19 0513317 ENSG00000118156 1 8

KANK2 19 0495541 ENSG00000197256 0 5

CYBA 16 0484142 ENSG00000051523 0 4

UBE2 16 0471502 ENSG00000103275 1 6

OLFM1 9 0446344 ENSG00000130558 1 7

MARK2 1 0438781 ENSG00000072518 1 7

CORO7 16 0434694 ENSG00000103426 1 6

KCNQ2 20 0428704 ENSG00000075043 1 8

ASAP1 8 0414992 ENSG00000153317 1 6

NOC2L 1 0412654 ENSG00000188976 1 6

Hypomethylation Intron POLR3E 16 0.647331 ENSG00000058600 4 0

VPS138B 8 0576756 ENSG00000132549 4 0

ANKRD13A 12 0.520639 ENSG00000076513 4 0

ZBTB20 3 0491524 ENSG00000181722 4 0

AC087393.2 17 044588 ENSG00000233098 5 1

ZDHHC1 16 0440425 ENSG00000159714 3 0

PDZD2 5 0440425 ENSG00000133401 3 0

DLGAP2 8 0423913 ENSG00000198010 5 1

NDST1 5 0405485 ENSG00000070614 3 0

Exon AC016907.1 2 0493142 ENSG00000233862 3 0

The table shows the nasal polyp tissue genes and locations undergoing methylation changes (hypermethylation and hypomethylation) with a likelihood
treatment > 0.4) after stimulation with SEB. Methylation score refers to the average methylation of the 3 samples in each experimental group. TCM: tissue culture
medium or no stimulated cells, SEB: cells stimulated with S. aureus enterotoxin B.
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Table 2 Biological pathway analysis of the 43 top ranked genes showing differential methylation after simulation with SEB

P-value Number of genes Total number of Pathway Pathway name Genes mapping
mapping the pathway genes in the pathway identifier to the pathway
0,004 2 58 REACT_118823 Cytosolic sensors of IKBKB, POLR3E
pathogen-associated DNA
0,012 2 110 REACT_22232 Signaling by interleukins STATSB, IKBKB
0,013 2 115 REACT_6966 Toll-like receptors cascades LGMN, IKBKB
0,015 2 120 REACT_121315 Glycosaminoglycan metabolism STAB2, NDST1
0,015 2 120 REACT_147739 MPS IX - Natowicz syndrome STAB2, NDST1
0,015 2 120 REACT_147853 Mucopolysaccharidoses STAB2, NDST1
0,015 2 120 REACT_147788 MPS 11IB - Sanfilippo syndrome B STAB2, NDST1
0,015 2 120 REACT_147719 MPS VI - Maroteaux-Lamy syndrome STAB2, NDST1
0,015 2 120 REACT_147825 MPS IV - Morquio syndrome A STAB2, NDST1
0,015 2 120 REACT_147860 MPS HIC - Sanfilippo syndrome C STAB2, NDST1
0,015 2 120 REACT_147759 MPS VII - Sly syndrome STAB2, NDST1
0,015 2 120 REACT_147734 MPS I - Hunter syndrome STAB2, NDST1
0,015 2 120 REACT_147857 MPS | - Hurler syndrome STAB2, NDST1
0,015 2 120 REACT_147749 MPS IIID - Sanfilippo syndrome D STAB2, NDST1
0,015 2 120 REACT_147753 MPS 1A - Sanfilippo syndrome A STAB2, NDST1
0,015 2 120 REACT_147798 MPS IV - Morquio syndrome B STAB2, NDST1
0,045 4 915 REACT_116125 Disease STAT5B, STAB2,
NDST1, CYBA

All genes used in the analysis showed a likelihood of treatment related effect > 0,4. P-value: un-adjusted, not corrected for multiple testing, representing the prob-
ability (from hypergeometric test) of finding a given number or more genes in each pathway by chance.

Table 3 Sub-pathways and biological functions of the most representative genes showing hyper-methylation after
stimulation with SEB

Gene UniProt  Pathway name Sub-pathways Biological function
ID (Reactome) (Reactome) (UniProt)
IKBKB 014920  Cytosolic sensors of ZBP1 mediated induction Serine kinase that plays an essential role in the NF-kappa-B
pathogen-associated DNA of type | Interferons signaling pathway which is activated by multiple stimuli
such as inflammatory cytokines, bacterial or viral products,
DNA damages or other cellular stresses. It is involved in the
transcriptional regulation of genes involved in immune
response, growth control, or protection against apoptosis.
May prevent the overproduction of inflammatory mediators
since they exert a negative regulation on canonical IKKs.
Adaptative immune response  TCR signaling
Signaling by interleukins IL-1 signaling
Toll-Like receptors cascades TLR2, TLR3, TLRS, TLR6,
TLR7, TLR8, TLRY, TLR10
POLR3E  Q9NVUO  Cytosolic sensors of Transcription of microbial Plays a key role in sensing and limiting infection by intracellular
pathogen-associated DNA dsDNA to dsRNA bacteria and DNA viruses. Acts as nuclear and cytosolic DNA
sensor involved in innate immune response. Can sense non-self
dsDNA that serves as template for transcription into dsRNA. The
non-self RNA polymerase Il transcripts, such as Epstein-Barr
virus-encoded RNAs (EBERs) induce type | interferon and
NF- Kappa-B through the RIG-I pathway.
STAT5B P51692  Signaling by interleukins Signaling of IL-2, IL-3, IL-5, Carries out a dual function: signal transduction and activation
IL-7 and GMCSF of transcription. Mediates cellular responses to the cytokine
KITLG/SCF and other growth factors. Binds to the GAS element
and activates PRL-induced transcription.
LGMN Q99538  Toll-Like receptors cascades Trafficking and processing It is involved in the processing of proteins for MHC class I

of endosomal TLR

antigen presentation in the lysosomal/endosomal system.

The genes for this analysis were selected from the Reactome over-representation pathway analysis.
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overrepresentation pathway analysis [7]. This algorithm
delivered a list of “Statistically over-represented pathways”
which represents all Reactome pathways containing pro-
teins from the input gene list. This analysis resulted in 17
pathways (Table 2) containing 6 potentially affected genes
(STA5B, IKBKB, STAB2, NDST1, LGMN and CYBA).
Based on previously published data regarding host-cellular
immune responses to bacterial exotoxins we selected three
main pathways (Table 3) containing the genes: STAT5B,
IKBKB, POLR3 and LGMN. These genes regulate processes
influencing the response of cells to superantigens according
to the biological function obtained in UniProt and the
Reactome databases (Table 3).

This study did not include healthy nasal mucosa. We
specifically investigated whether S. aureus enterotoxin B
might influence the gene DNA methylation pattern in
inflamed (nasal polyp) tissue without studying the effects
of the diseased status itself. Indeed, validation experiments
including a larger number of samples as well as samples
from control (healthy) tissue are warrented in light of
these preliminary results. Also we could not preclude
effects of other staphylococcal superantigens or super-
antigens from other germs as the nose is a hotspot of
micro-organism activity [8]. However, although methyla-
tion differences due to other enterotoxins are a distinct
possibility, this should not affect the results as both SEB
treated and untreated cells originated from the same
patients. Only if significant concentrations of other
enterotoxins were present in all 3 patients might this
confound the results. In conclusion, these preliminary
findings suggest DNA methylation as a possible mechanism
by which superantigens may regulate immune function in
the nasal mucosa.

Additional file

Additional file 1: Description of the data: These files include more
detailed information about the patient’s characteristics,
methodologies used and results obtained in the study.
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