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Abstract
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This review covers basic aspects of histone modification and the role of posttranslational histone modifications in the
development of allergic diseases, including the immune mechanisms underlying this development. Together with
DNA methylation, histone modifications (including histone acetylation, methylation, phosphorylation, ubiquitina-
tion, etc.) represent the classical epigenetic mechanisms. However, much less attention has been given to histone
modifications than to DNA methylation in the context of allergy. A systematic review of the literature was undertaken
to provide an unbiased and comprehensive update on the involvement of histone modifications in allergy and the
mechanisms underlying this development. In addition to covering the growing interest in the contribution of histone
modifications in regulating the development of allergic diseases, this review summarizes some of the evidence sup-
porting this contribution. There are at least two levels at which the role of histone modifications is manifested. One is
the regulation of cells that contribute to the allergic inflammation (T cells and macrophages) and those that partici-
pate in airway remodeling [(myo-) fibroblasts]. The other is the direct association between histone modifications and
allergic phenotypes. Inhibitors of histone-modifying enzymes may potentially be used as anti-allergic drugs. Further-
more, epigenetic patterns may provide novel tools in the diagnosis of allergic disorders.
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Background

In the last few decades, there has been a substantial
increase in the prevalence of allergic diseases in the
industrialized countries [1-3]. Since this change could
not be explained by a rather stable population genetic
profile [2—4], increased exposure to harmful and reduced
exposure to protective epigenetically-mediated envi-
ronmental factors have been considered, at least in
part, as a possible explanation for this epidemiological
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phenomenon [5-9]. While DNA methylation has been
extensively studied as the epigenetic mechanism involved
in the etiopathogenesis of allergic disorders, posttrans-
lational histone modifications, another important clas-
sical epigenetic mechanism, have not been as widely
investigated and discussed because it is not considered
as important as DNA methylation [5-7, 10]. The review
firstly describes the (bio-) chemical basics of epigenetic
histone modifications. This is followed by an assessment
of recent evidence that supports a role for histone modifi-
cations in the epigenetic regulation of the pathogenesis of
allergy and related disorders, together with a description
of the underlying cellular and molecular mechanisms.

Main text

Histone modifications: the basics

Similarly to DNA methylation, posttranslational histone
modifications do not affect DNA nucleotide sequence but
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can modify its availability to the transcriptional machin-
ery. Although histone modifications play also other roles,
such as histone phosphorylation, best known for its
contribution to DNA repair in response to cell damage,
this review deals primarily with general mechanisms of
histone modifications in the context of their role in epi-
genetic modulation of gene expression. Several types of
histone modifications are known, amongst which acety-
lation, methylation, phosphorylation, and ubiquitination
are the best studied and most important in terms of the
regulation of chromatin structure and (transcriptional)
activity [11-15]. In general, histone modifications are
catalyzed by specific enzymes that act, predominantly,
but not exclusively (e.g. some types of histone phospho-
rylation), at the histone N-terminal tails involving amino
acids such as lysine or arginine as well as serine, threo-
nine, tyrosine, etc. Histone acetylation usually leads to
higher gene expression. This may not always be the case
for histone H4 [16—18]. Histone methylation in turn has
either transcriptionally permissive or repressive charac-
ter, depending on the location of targeted amino acid res-
idues in the histone tail and/or the number of modifying
(e.g. methyl) groups added [5, 6, 14, 15, 19, 20]. Table 1

Page 2 of 16

summarizes the various forms of histone modifications
appearing in this review along with their effects on gene
transcriptional activity.

Histone acetylation

Histone acetylation status is regulated by two groups of
enzymes exerting opposite effects, histone acetyltrans-
ferases (HATs) and histone deacetylases (HDACs). HATs
catalyze the transfer of an acetyl group from acetyl-CoA
to an amino acid group of the target lysine residues in
the histone tails, which leads to the removal of a posi-
tive charge on the histones, weakening the interaction
between histones and (negatively charged phosphate
groups of) DNA. This in turn typically makes the chro-
matin less compact and thus more accessible to the tran-
scriptional machinery. HDACs remove acetyl groups
from histone tail lysine residues and thereby work as
repressors of gene expression [5, 14, 21-24].

HATs are classified into five (or sometimes six) fami-
lies. The GCNb5-related N-acetyltransferase (GNAT)
family comprises KAT2A and KAT2B enzymes. They
are involved in acetylation of histones and transcription

Table 1 List of histone modifications appearing in this review along with their effects on the transcriptional activity

Modification and site Abbreviation Effect on transcription?
Histone acetylation
Histone 3 panacetylation H3ac Activating/permissive
Histone 4 panacetylation H4ac Activating/permissive®
Histone 3 lysine 4 acetylation H3K4ac Activating/permissive
Histone 3 lysine 9 acetylation H3K%ac Activating/permissive
Histone 3 lysine 14 acetylation H3K14ac Activating/permissive
Histone 3 lysine 18 acetylation H3K18ac Activating/permissive
Histone 3 lysine 27 acetylation H3K27ac Activating/permissive
Histone 4 lysine 16 acetylation H4K16ac Activating/permissive
Histone methylation
Histone 3 lysine 4 methylation H3K4me1 Activating/permissive
Histone 3 lysine 4 dimethylation H3K4me2 Activating/permissive
Histone 3 lysine 4 trimethylation H3K4me3 Activating/permissive
Histone 3 lysine 9 dimethylation H3K9me2 Repressive
Histone 3 lysine 9 trimethylation H3K9me3 Repressive
Histone 3 lysine 27 trimethylation H3K27me3 Repressive
Histone 3 lysine 36 trimethylation H3K36me3 Activating/permissive
Histone 3 lysine 79 methylation H3K79mel Activating/permissive
Histone phosphorylation
Histone 3 serine 10 phosphorylation H3S10ph Activating/permissive
Histone ubiquitination
Histone 2A ubiquitination H2Aub Repressive
Histone 2B ubiquitination H2Bub Activating/permissive

? According to the cells signaling technology webpage [100] and/or other sources referenced in the “Main text” and/or Tables 2 and 3 of this review

b See also “Histone modifications: the basics”
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Table 3 Studies on the role of histone modifications in allergic diseases meeting the secondary selection criteria

Study

Major epigenetic findings (in the context of major study results)

Zhong et al. [102]

Zheng et al. [103]

Vicente et al. [104]

Naranbhai et al. [105]

Linetal. [106]

Castellucci et al. [70]

Hsieh et al. [71]

Sharma et al. [107]

Escobar et al. [108]

Huber et al. [74]

Significantly decreased expression of Th2-related cytokines (IL-4, IL-5) in human CD4+ T-cells and PBMCs was observed after
transfection with chemically synthesized PIW! interacting RNA (piRNA), piR30840. Accordingly, antisense inhibition of the
endogenous piR30840 resulted in CD4+ T-cells with upregulated IL-4 expression. As no differences in histone methyla-
tion levels at the /L4 promoter region between piR30840-transfected and -untransfected CD4+ T-cells were detected, the
functioning of piR30840 was not attributed to this type of histone modification but rather to pre-mRNA decay through
nuclear exosomes

After treatment with TSA, a significant increase of the (lower) transcription of STAT3-dependent genes (IL77A and IL22) in
IL-23-stimulated PBMCs from chronic mucocutaneous candidiasis (CMC) patients (n=16) (back) to control (n=37) levels
was observed. Conversely, TSA significantly decreased the enhanced transcription of STAT1-dependent genes (CXCL10 and
IRFT) in IFN-a-stimulated gain-of-function STAT1-mutation Epstein-Barr virus (EBV)-transformed B cell line back to control
levels

Noticeable regulatory activity characterized by H3K4me1/2 peak identified four putative regulatory elements (PREs) in
the 8921 core region of genetic association (with allergies) in lymphoblastoid cells. Significant correlation between the
allergy-associated SNP rs7009110 located on the 8921 and PAGT expression

Significant enrichment of peak cis-eQTL was detected in DNA-hypomethylated regions, and in regions marked by H3K4me3
(associated with promoter activity), H3K27ac and H3K4me1 (associated with active or poised enhancers), and H3K36me3
(associated with gene activation) in neutrophils. Correspondingly, a depletion of peak cis-eQTL was observed in DNA-
hypermethylated regions and in regions marked by H3K27me3 and H3K9me3 (repressive histone modifications). A SNP
rs2240335, an eQTL in PADI4 (a locus associated with rheumatoid arthritis), was shown to be located within regions
marked by H3K27ac and H3K4me1

Increased H4ac levels at the VCAMT promoter region correlating with higher VCAMT expression (protein/mRNA) and pro-
moter activity in human tracheal smooth muscle cells were observed upon pretreatment with ET-1, mediated via Elk-1/
p300 interaction, in an ET receptor/Src/RTK/PI3K/AKT/p42/p44 MAPK-dependent manner

Ablation of the IL-10-mediated deacetylation of H4ac at the CXCL8 promoter in LPS-stimulated monocytes was observed
after CI-994, a class | HDACI, treatment. Concordantly, IL-10-mediated inhibition of CXCL8 transcription in LPS-stimulated
PBMCs obtained from COPD patients (n=6), due to reduced HDAC2 expression, was dampened compared to acute
respiratory failure patients (n=4) and healthy controls (n=6)

Noticeable suppression of the LPS-induced MDC/CCL22 expression in THP-1 cells (human monocyte cell line) and human
primary monocytes was observed after treatment with sesamin, a class of phytoestrogen isolated from sesame seed
Sesamum indicum, due to dampened recruitment of a HAT, CREBBP, and a subsequent decrease in H3ac and H4ac levels at
the CCL22 promoter

Significant enrichment of active histone marks H3K4me1 and H3K27ac at the regions near to two asthma-associated SNPs in
the FADS2 (rs968567) and the NAGA (rs1801311) loci was observed in three different cell lines: Jurkat (human T lymphocyte
cell line), Beas-2B (human bronchial epithelial cell line) and A549 (human lung epithelial cell line). Consistently, both SNPs
showed significant enrichment of formaldehyde-assisted isolation of regulatory elements (FAIRE) signals in all three cell
lines

Markedly increased Jumoniji, AT Rich Interactive Domain 2 (Jarid2), a DNA-binding protein that recruits the polycomb
repressive complex 2 (PRC2) to chromatin, and H3K27me3 islands were detected throughout the genome (among other
regions, within 10 kb of the /122, 1110, and /19 loci) in miR-155-deficient compared to wild-type mouse Th17 cells

Significantly elevated levels of the repressive H3K27me3 mark at the conserved noncoding sequence (CNS-1) located 5 kb
upstream of exon 1A of the GATA3 gene in primary naive human CD4+ T-cells after treatment with IFN-a (both, with
or without IL-4 co-stimulation) were observed, resulting in a consequential inhibition of GATA3 binding to exon 1A (i.e.
down-regulation of a positive-feedback loop of GATA3/GATA3 autoactivation and thus reduced gene expression)

Gschwandtner et al. [109] When compared to both neonatal and adult human keratinocytes (KCs), fetal human KCs produced more AMPs, and had

Coward et al. [58]

Sanders et al. [59]

Hanetal.[110]

lower global H3K27me3 levels and higher expression of a histone demethylase JMJD3. JMJD3 knockdown with siRNA led
to anincrease in H3K27me3 levels and lower AMP production

Markedly increased H3K9me3 and H3K27me3 levels at the COX2 promoter were detected in primary human fibroblasts from
IPF lung (stimulated or not with the COX2 inducer, IL-2[3) when compared to fibroblasts from non-fibrotic lung, which
were related to the recruitment of HMTs, G9a and EZH2. Substantially decreased H3K9me3 and H3K27me3, and increased
H3ac and H4ac levels at the COX2 promoter resulting in COX2 mRNA and protein re-expression were observed in fibro-
blasts from IPF lung after treatment with G9a or EZH2 inhibitors (more significant effect with IL-2(3 stimulation)

Markedly increased H3K9ac and decreased H3K9me3 at the pro-apoptotic BAKT gene accompanied with increased expres-
sion (MRNA) and substantially decreased H3K9ac and increased H3K9me3 levels at the anti-apoptotic BCL2LT gene
accompanied by a decrease in gene expression (MRNA) were observed in primary human IPF fibroblasts after treatment
with a HDACI, SAHA

Significantly reduced H3K27me3 levels at the ALOX15 promoter were detected in A549 cells after treatment with IL-4, coin-
ciding with higher ALOX75 mRNA levels. More potent induction of ALOX15 was observed in human monocytes. Significant
increase in H3K27me3 levels after depletion of a lysine demethylase UTX (with siRNA) was observed, resulting in reduced
IL-4-induced ALOX15 expression. Inhibition of the IL-4-mediated ALOX15 expression in UTX-depleted human monocytes
with no changes in the H3K27me3 levels when compared to control monocytes was found
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Table 3 (continued)

Study Major epigenetic findings (in the context of major study results)

Lakshmietal. [111] Markedly reduced expression of PPARy correlated with downregulated HDAC2 expression in lung and human bronchial epi-
thelial cells (HBE) obtained from COPD patients compared with healthy controls. Noticeable suppressed GR-a expression
in H292 cells (human lung epithelial cell line) after CSE treatment due to dampened expression of PPARy and HDAC2 was
also observed. The suppressive effect of CSE on GR-a and HDAC expression was attenuated with PPARy agonists

Zhang et al. [60] Downregulation of COL3AT expression in primary human IPF myofibroblasts with concomitant increases of H3ac, H4ac,
H3K9ac, and H3K27me3 levels at COL3AT promoter was observed after SAHA treatment
Wiegman et al. [112] Significantly increased HAT activity levels and decreased HDAC2 activity levels (due to protein modification: nuclear phos-

phorylation and cytoplasmic carbonylation) were observed in lung extracts obtained from mice after ozone exposure
compared to air-exposed animals

Cheetal. [113] Inhibition of the sphingosine-1-phosphate (S1P)-induced IL-6 secretion by primary human ASMCs via MKP-1-mediated
repression of MAPK-driven activation of mitogen and stress-activated protein kinase 1 (MSK1) and phosphorylation at
H3S10 (H3510ph; global; putatively at /L6 promoter as well) was observed after the treatment of the cells with dexametha-
sone

Liuetal. [61] Significantly higher H3K9ac levels at the TERT promoter region were detected in primary human lung fibroblasts from
patients with IPF (n=70) compared with healthy control subjects (n=117). After treatment of the cells with a HDACi
(TSA), significantly elevated TERT mRNA and TERT protein levels (time and dose-dependent increase) were detected in
both human lung fibroblasts from patients with IPF and mouse lung fibroblasts from a murine model of bleomycin-
induced pulmonary fibrosis

Gerasimova et al. [75] Noticeable enrichment of asthma-associated non-coding SNPs and H3K4me1 peaks (enhancers) in the Th2 cytokine locus
of CD4+ T-cells (when compared with other cell/tissue types) was observed

Lietal. [76] Significantly decreased LAT expression consistent with decreased H3ac and H4ac levels and increased H3K9me?2 levels at
the LAT (Lat) upstream region in lung T-cells obtained from ovalbumin-induced allergic airway inflammation rat model
when compared with control animals were found. H3ac and H4ac as well as LAT expression noticeably increased after
treatment of the cells with TSA

Luoetal. [77] Increased global H3ac and H3K4me levels were observed in PBMCs of HSP patients with kidney damage (n=16) compared
to HSP patients without kidney damage (n=8) and healthy controls (n=22). Higher CD4 +T-cell H3ac and H3K4me3 lev-
els were detected at /L4 regulatory regions of HSP patients when compared to control subjects. Higher expression (MRNA)
of several HATs (CREBBP, PCAF, and p300) and HMTs (SETD1A, SETDB1, SUV39H1, and SUV39H2) and lower expression of a
few HDACs (HDAC1, HDAC2, HDAC3, and SIRT1) were found in PBMCs of both HSP groups compared to healthy controls

Kallsen et al. [114] Markedly increased H3ac and H3K4me3 levels at the DEFBT promoter in A549 cells coinciding with enhanced DEFB1 expres-
sion after treatment with class | HDACi (MS-275) were found
Han et al. [78] Noticeable DNA hypomethylation at 26 unique regions (10-70 kb) was found in naive CD4+ T-cells obtained from psoriasis

patients (n=12) compared to atopic dermatitis patients (n=15) and healthy controls (n=10). These regions coincided
incidentally with various strong epigenomic signals, including histone modifications (H3K4me1, H3K27ac, and H3K4me3),
and transcription factor binding sites

Robertson etal. [115] Significantly increased HDAC activity (only at the protein level) was observed in ARNT-depleted N-TERT keratinocytes
(15-20% increase) and in ARNT-depleted immortalized human HaCaT keratinocytes (~ 50% increase). After treating ARNT-
depleted N-TERT keratinocytes with TSA, the negative effect of ARNT-deficiency on transcription of amphiregulin gene
(AREG), an important ligand of EGFR, was abolished

Vazquez et al. [116] A novel inducible hypersensitive region was identified in human and mouse lymphocytes that is located in intron | of CD69.
H3K4me2, H3ac, H3K14ac, and/or H3K4ac levels within this region were found to be dynamically regulated during thymo-
cyte development and/or to be constitutively high in mature T lymphocytes

Zijlstraetal. [117] Reduced glucocorticoid sensitivity and dampened HDAC activity were observed in 16HBE cells (human bronchial epithelial
cell line) after treatment with IL-17A. Overexpression of HDAC2 reversed IL-17A-induced glucocorticoid insensitivity

For criteria of the selection, please, refer to Fig. 1 and “Systematic search: methodology” section of “Main text”

ALOX15, arachidonate 15-lipoxygenase (ALOX15) gene; AMP, antimicrobial peptide; ARNT, aryl hydrocarbon receptor nuclear translocator; BAK1, BCL2 antagonist/
killer (Bak) gene; Bcl-xL, B-cell lymphoma-extra large (Bcl-xl) gene; CBP, CREB binding protein; COL3A1, collagen type Ill alpha 1 chain (COL3A1) gene; COPD, chronic
obstructive pulmonary disease; CREBBP, CREB binding protein; CSE, cigarette smoke extract; DEFB1, defensin beta 1 (DEFB1) gene; eQTL, expression quantitative trait
loci; EIk-1, ETS transcription factor; ET-1, endothelin-1; EZH2, enhancer of zeste 2 polycomb repressive complex 2 subunit; FADS2, fatty acid desaturase 2 (FAD2) gene;
GR-q, glucocorticoid receptor alpha; HMT, histone methyltransferase; HSP, Henoch-Schonlein purpura; IL17A/22, interleukin 17A/22 (IL-17A/-22) gene; 119/10/22; mouse
interleukin 9/10/20 (il-9/-10/-22) gene; IL-23/2p, interleukin 23/2p; INF-q, interferon alpha; IPF, Idiopathic pulmonary fibrosis; IRF1, interferon regulatory factor 1; LAT,
linker for activation of T-cells; MDC/CCL22, macrophage-derived chemokine/C-C motif chemokine ligand 22 (CCL22) gene; NAGA, alpha-N-acetylgalactosaminidase
(NAGA) gene; PADI4, peptidyl arginine deiminase 4 (PADI4) gene; PAG1, phosphoprotein membrane anchor with glycosphingolipid microdomains 1 (PAG1) gene;
PCAF, lysine acetyltransferase 2B; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; PPARy, peroxisome proliferator activated receptor gamma; RTK, Receptor
tyrosine kinase; SAHA, suberoylanilide hydroxamic acid; siRNA, small interfering RNA; SNP, single-nucleotide polymorphism; Src, SRC proto-oncogene, non-receptor
tyrosine kinase; TERT, telomerase transcriptase (TERT) gene; VCAM1, vascular cell adhesion molecule-1 (VCAM-1) gene

For the remaining abbreviations please refer to Tables 1 and 2
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factors and thus cell cycle regulation, and DNA replica-
tion and repair [25, 26]. Moreover, these enzymes have
been recently identified to be important for centro-
some function as well [27]. The MYST family is in turn
composed of KAT6A/MOZ/MYST3, KAT6B/MOREF/
MYST4, KAT7/HBO1/MYST2, KAT8/hMOF/MYST],
and KAT5/Tip60. It contributes to transcription regu-
lation and is also responsible for DNA repair [28-30].
Interestingly, autoacetylation of MYST family protein
enzymes participates in their regulation, which makes
them distinct from other acetyltransferases, drawing
at the same time similarities to the phosphoregulation
of protein kinases [31, 32]. The other HAT families are
much smaller. KAT3A and KAT3B enzymes belong to
p300/CBP family, and KAT4/TAF1/TBP and KAT12/
TIFIIIC90 are members of the general transcriptional
factor-related HAT family [23, 28, 33]. Steroid receptor
co-activators family comprises KAT13A/SRC1, KAT13B/
SCR3/AIB1/ACTR, KAT13C/p600, and KAT13D/
CLOCK [23, 34]. Finally, KAT1/HAT1 and HAT4/
NAAG60 are cytoplasmic HATs [23].

Eighteen enzymes belonging to the HDAC superfam-
ily have been identified. They are further subdivided into
four classes, including class I (HDAC1, HDAC2, HDACS,
and HDACS), class IIa (HDAC4, HDAC5, HDAC7, and
HDACD9), class IIb (HDAC6 and HDAC10), class III, so-
called sirtuins (SIRTs; SIRT 1-7; enzymes evolutionally
and mechanistically different from the other HDACsS),
and class IV (HDAC11) [35-37]. Class I HDACs are
characterized by a ubiquitous nuclear expression in all
tissues, class IIb HDACs are present both in the nucleus
and cytoplasm, and class Ila HDACs show mainly cyto-
solic localization. Not much is known about HDAC11,
and sirtuins which localize in nucleus, cytosol and/or
mitochondria [36].

Histone methylation
Histone methylation is mediated by histone methyl-
transferases (HMTs), including lysine methyltransferases
(KMTs) and arginine methyltransferases (PRMTs), and
histone demethylation by histone demethylases (HDMs).
Whereas acetylation of the histone lysine affects the
electrical charge of the histones and thus their interac-
tion with DNA, methylation of histone lysine or arginine
does not affect this electrostatic bond, but instead indi-
rectly influences the recruitment and binding of differ-
ent regulatory proteins to chromatin [19, 38, 39]. HMTs
can transfer up to three methyl groups from the cofac-
tor S-adenosyl-L-methionine (SAM) to lysine or arginine
residues of the histones [19, 38]. More than 50 human
KMTs are known at the moment, which, based on their
catalytic domain sequence, can be further subdivided
into the SET domain-containing and the DOT1-like

Page 8 of 16

protein family, the latter having only one representative
in humans, with a catalytic domain structurally more
similar to the PRMTs [19, 38, 39]. KMTs are more spe-
cific than HATs and they generally target a specific lysine
residue. Methylation of H3K4 residue (for the description
of histone modifications including their location, charac-
ter and effect on transcription, please, refer to Table 1) is
mediated in mammals by KMTs such as KMT2A/MLLI,
KMT2A/MLL2, KMT2F/hSET1A, KMT2G/hSET1B,
or KMT2H/ASH1. Examples of KMTs responsible for
H3K9 methylation include KMT1A/SUV39H1, KMT1B/
SUV39H2, KMT1C/G9a, or KMT1D/EuHMTase/GLP.
H3K36 methylation is catalyzed by e.g. KMT3B/NSDI,
KMT3C/SMYD2, or KMT3A/SET(D)2. KMT6A/EZH2
methylates H3K27, andKMT4/DOTIL targets H3K79.
Etc. [19, 38, 39].

Based on the catalytic mechanism and sequence
homology, HDMs can be divided into two classes.
Firstly, amine-oxidase type lysine-specific demethylases
(LSDs or KDM1 s), including KDM1A/LSD1/AQOF2 and
KDM1B/LSD2/AOF1. These remove the methyl groups
from mono- and dimethylated H3K4. Secondly, the
JumonjiC (JMJC) domain-containing HDMs, in turn, cat-
alyze the demethylation of mono-, di-, and trimethylat-
edlysine residues at various histone amino acid residues.
Over thirty members of this group can be further subdi-
vided, based on the J]MJC domain homology, into seven/
eight subfamilies (KDM2-7/8) [19, 38—41].

Histone phosphorylation

Histone phosphorylation status is controlled by two
types of enzymes having opposing modes of action.
While kinases add phosphate groups, phosphatases
remove the phosphates [13, 15]. At least three functions
of phosphorylated histones are known, DNA damage
repair, the control of chromatin compaction associated
with mitosis and meiosis, and the regulation of tran-
scriptional activity (similar to histone acetylation) [13,
15]. In comparison to histone acetylation and methyla-
tion, histone phosphorylation works in conjunction with
other histone modifications, establishing the platform for
mutual interactions between them. This cross-talk results
in a complex downstream regulation of chromatic status
and its consequences [13, 15, 42]. For example, histone
H3 phosphorylation (specifically H3S10ph) can directly
affect acetylation levels at two amino acid residues of the
same histone (H3K9ac and H3K14ac) [43, 44]. Further-
more, H3S10ph can induce transcriptional activation by
interaction with H4K16ac [42].
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Histone ubiquitination

Protein ubiquitination is an important post-translational
modification that regulates almost every aspect of cellu-
lar function in many cell signaling pathways in eukary-
otes. Ubiquitin is an 8.5 kD protein which is conjugated
to substrate proteins by the ubiquitin—proteasome sys-
tem thereby regulating the stability and turnover of the
target proteins. Histone ubiquitination is carried out by
histone ubiquitin ligases and can be removed by ubiq-
uitin-specific peptidases, the latter known as deubiqui-
tinating enzymes (DUBs) [45-47]. Monoubiquitination
has a critical role in protein translocation, DNA dam-
age signaling, and transcriptional regulation. Histone 2A
monoubiquitination (H2Aub) is more often associated
with gene silencing. Monoubiquitination of histone 2B
(H2Bub) is typically correlated with transcription activa-
tion. Polyubiquitination marks the protein for degrada-
tion or activation in certain signaling pathways [45-48].
Similarly to histone phosphorylation, there is also cross-
talk between histone ubiquitination and other histone
modifications [46—48]. For instance, monoubiquitination
of histone H3 is able to induce acetylation of the same
histone [49].

Epigenetic readers

In addition to epigenetic writers, i.e. enzymes add-
ing epigenetic marks on histones (HATs, HMTs/KMTs,
PRMTs, kinases, ubiquitin ligases) and epigenetic erasers
(HDACs, HDMs/KDMs, phosphatases, DUBs), there are
also epigenetic readers, which are the molecules that rec-
ognize and bind to the epigenetic marks created by writ-
ers, thereby determining their functional consequences.
They include proteins containing bromodomains, chro-
modomains, or Tudor domains [50, 51]. Some enzymes
with primary activities different from epigenetic reading
possess bromodomains as well, for example certain HATSs
[51].

Systematic search: methodology

In order to cover the area of interest, a systematic lit-
erature search was conducted (Fig. 1). In brief, On
January 23, 2017, the PubMed database (http://www.
ncbinlm.nih.gov/pubmed) was searched by using the
input “(allergy OR atopy OR asthma OR dermatitis OR
eczema OR food allergy OR rhinitis OR conjunctivi-
tis) AND (histone modifications OR histone modifica-
tion OR histone acetylation OR histone methylation OR
histone phosphorylation OR histone ubiquitination)’,
restricting the results with “5 years” (“Publication dates”)
and “Humans” (“Species”) filters, which yielded a total
of 170 hits. These were subsequently subjected to full
text-based screening to exclude articles not reporting
original data (reviews, editorials, commentaries, etc.),
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which resulted in elimination of 54 publications. From
the remaining 116 papers, a further 72 were excluded
as not being directly or at least indirectly relevant to the
topic of the present review (not reporting data on his-
tone modifications, reporting histone modification data
but not in the context of allergic or related disorders, or
both). The remaining 44 articles were divided into two
groups. The group that met the primary selection crite-
rion contained 17 papers reporting the data on the role
of histone modifications in allergic diseases obtained in
material collected from allergic subjects and thus directly
relevant to allergies is presented in Table 2. Another 27
articles of potential interest comprised the additional
group (Table 3). These did not necessarily target allergic
disorders but allergy-like diseases or related conditions,
did not report histone modification data obtained in pri-
mary human cells/tissues, or indeed a combination of
those. This included also those reporting data on epige-
netic mechanisms likely playing a role in allergies but not
directly related to/associated with this group of diseases.

Systematic search: review

Epigenetic mechanisms are thought to play an important
regulatory role in allergic inflammation and the develop-
ment of allergic disorders. DNA methylation is the clas-
sical epigenetic modification that has been most widely
studied in this context. However, histone modifications,
which contribute to the lineage commitment, differen-
tiation and maturation of immune cells, including those
strongly involved in allergic inflammation such as CD4-+
T-helper (Th) cells, are likely to play a crucial role in the
predisposition to developing atopic diseases as well as in
the effector phase of allergic inflammation [5, 6, 10, 52,
53]. Indeed, our systematic search identified a number
of recent studies that sought to define the relationships
between histone modifications and allergic inflammation
or related immune mechanisms, and/or allergic diseases
or disorders sharing some of the pathophysiology. The
results reported in those 44 original articles are summa-
rized in Tables 2 and 3.

Several studies investigated the relationships between
histone modifications in airway smooth muscle cells
(ASMCs) and the respiratory tract allergic inflammatory
disease. For instance, increased binding of bromodo-
main-containing HATs [E1A binding protein p300 (p300)
and p300/CBP-associated factor (PCAF)] accompanied
by significantly higher H3ac levels (specifically H3K18ac)
at the C-X-C motif chemokine ligand 8 (CXCL8) gene
(CXCL8) promoter were observed in ASMCs obtained
from asthmatics compared to healthy controls [54].
Furthermore, treatment of cultured cells with bromo-
domain and extra-terminal (BET) protein inhibitors
reduced CXCLS8 secretion [54]. The application of BET
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PubMed search:

i.  For“(allergy OR atopy OR asthma OR dermatitis OR eczema
OR food allergy OR rhinitis OR conjunctivitis) AND (histone
modifications OR histone modification OR histone acetylation 170 Records
OR histone methylation OR histone phosphorylation
OR histone ubiquitination)’

ii. Using “5 years” (“Publication dates”) and “Humans” (“Species”) filters

iii. OnJanuary 23, 2017

116 Records

Finally included 44 Records

As meeting primary criterion(Table 2) if: As meeting secondary criteria (Table 3),
i. Reporting the data on the role of potential interest though:

of histone modifications i. Not really targeting allergic diseases

in allergic diseases obtained but allergy-like disorders or related conditions

. . ii. Not reporting the histone modification data
n (mart'als collected from) obtained in primary human cells/tissues
allergic subjects iii. A combination of those
iv. Reporting data on epigenetic mechanisms
(likely) playing a role in allergies
but not directly related to/associated
with this group of diseases
v. Others

Fig. 1 Strategy of systematic literature search and its results
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bromodomain mimics reduced in turn fetal calf serum
plus transforming growth factor beta (TGF-P) -induced
ASMC proliferation and interleukin 6 (IL-6) gene (IL6)
and CXCLS8 expression, with the required dose depend-
ing on asthma severity of cell donor [55]. On the other
hand, no differences in H3ac and H4ac levels at the
cytochrome c oxidase subunit II (COX2) gene (COX2)
between the asthmatic and non-asthmatic ASMCs were
detected, regardless of whether they were stimulated
with proinflammatory cytokines [56]. Although asth-
matic and non-asthmatic ASMCs did not differ in their
H3ac or H4ac levels at the vascular endothelial growth
factor A (VEGF) locus (VEGFA), the cells obtained
from affected individuals displayed slightly but consist-
ently higher H3K4me3 and a low H3K9me3 levels [57].
Moreover, treatment with an inhibitor of a HMT (HMTi),
euchromatic histone-lysine N-methyltransferase 2 (G9a),
increased VEGF expression in non-asthmatic ASMCs to
near asthmatic levels [57].

Histone modifications at several of the above-men-
tioned loci contribute also to the pathophysiology of
some other inflammatory disorders of the lung. For
example, H3K9me3 and H3K27me3 levels at the COX2
promoter were found to be substantially higher in pri-
mary human fibroblasts isolated from lung tissue of idi-
opathic pulmonary fibrosis (IPF) patients compared
to non-IPF fibroblasts. This was accompanied by the
recruitment of HMTs, G9a and enhancer of zeste 2
polycomb repressive complex 2 subunit (EZH2) [58].
Interestingly, after treatment with G9a or EZH2 inhibi-
tors, the levels of H3K9me3 and H3K27me3 markedly
decreased and H3ac and H4ac levels increased at the
COX2 promoter [58]. Several other studies observed
the involvement of histone modifications in the regu-
lation of gene expression in (human) IPF lung (myo-)
fibroblasts, the effects of which were sensitive to HDAC
inhibitor (HDACi) treatment [59-61]. Histone acetyla-
tion and/or methylation in (myo-) fibroblasts were also
demonstrated to regulate expression of the loci involved
in the pathogenesis of nasal chronic rhinosinusitis and
polyposis, such as prostaglandin E receptor 2 (EP2)
gene (PTGER2) [62]. Furthermore, HDACi treatment
influenced HDAC expression and histone acetylation at
several loci, thus affecting nasal polyp myofibroblast dif-
ferentiation and extracellular matrix production [63, 64].
Finally, although no differences in ADAM metallopepti-
dase domain 33 (ADAM33) gene (ADAM33) expression
were observed between asthmatic and healthy control
bronchial fibroblasts, treatment with TGF-§ suppressed
ADAM33 mRNA expression through chromatin conden-
sation related to deacetylation of H3ac, demethylation of
H3K4, and hypermethylation of H3K9 at the ADAM33
promoter [65]. Asthmatic and non-asthmatic histone
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acetylation levels were compared also in alveolar epithe-
lial cells [66]. Global H3K18ac and H3K9me3 levels were
higher in cells from asthmatics, which was also the case
for gene-specific H3K18ac (but not H3K9me3) around
transcription start sites of the loci encoding tumor pro-
tein p63 (TP63; ANp63 isoform), epidermal growth fac-
tor receptor (EGFR), and signal transducer and activator
of transcription 6 (STAT6) [66]. The latter effect was
ablated upon HDAC: treatment [66].

Several studies were conducted on the biology of
monocytes, the mechanisms of epigenetic modulation
controlling production of cytokines, and their role in
the onset/severity of allergic diseases. H4ac levels at the
glucocorticoid response element upstream of the dual
specificity phosphatase 1 gene (DUSPI) encoding for
MAPK phosphatase 1 (MKP-1) substantially increased in
dexamethasone-treated cells obtained from both steroid-
sensitive and steroid-resistant asthmatics patients [67].
Furthermore, preincubation with calcitriol led to a signif-
icant enhancement of the dexamethasone-induced H4ac,
with higher H4ac levels observed in monocytes obtained
from steroid-sensitive than those from steroid-resistant
individuals [67]. The involvement of histone acetylation
or phosphorylation in regulation of gene expression in
monocytes/macrophages was also demonstrated for C-C
motif chemokine ligand 2/17/22 (CCL2/17/22), CXCLS,
or IL6 loci [68-71]. In addition, in monocytes, histone
modification changes were susceptible to pharmacologi-
cal modification ex vivo, demonstrated by the effect of
HDACi on CXCL8 Hé4ac levels [70].

Several studies have focused on T-cells. For example,
differences in H3ac and H4ac levels at the interleukin 13
(IL-13) gene (IL13) that were observed in CD4+ T-cells
from children with allergic asthma and healthy controls
correlated with serum IL-13 concentrations [72]. Dif-
ferential enrichment of H3K4me2 in 200 cis-regulatory/
enhancer regions in naive, Thl, and Th2 CD4+ T-cells
was observed between asthmatic and non-asthmatic
subjects. Moreover, 163 of those 200 asthma-associated
enhancers were Th2-specific and 84 of them contained
binding sites for transcription factors involved in T cell
differentiation [e.g. GATA binding protein 3 (GATA3),
T-box 21 (TBX21) and RUNX3] [73]. Most of the other
studies identified by our literature search were also sup-
portive for the importance of histone modifications, such
as acetylation and methylation, in (CD4+) T-cell biol-
ogy and/or related pathophysiology of allergic disorders
[74-78].

Some prenatal dietary exposures, previously demon-
strated to modulate the infant’s immune responses and/
or risk of allergy development in offspring [79-82], have
recently been shown to be associated with the altera-
tions in histone acetylation profiles in neonatal cells. For



Alaskhar Alhamwe et al. Allergy Asthma Clin Immunol (2018) 14:39

instance, cord blood (CB) CD4+ T-cells obtained from
children born from mothers with highest serum folate
levels during pregnancy were characterized by signifi-
cantly higher histone H3ac and H4ac levels at the GATA3
gene (GATA3) promoter, markedly lower H4ac levels at
the analogous region of the interferon gamma (IFNy)
gene (IFNG), and significantly higher interleukin-9 (IL-
9) gene (IL9) promoter H4ac levels when compared to
the lowest folate level group [83]. In CB CD4+ T-cells
obtained from newborns of mothers supplemented with
fish oil (w— 3 fatty acids) during pregnancy in turn, sig-
nificantly higher H3ac levels were observed at the pro-
tein kinase C zeta (PKC{) gene (PRKCZ) and IFNG locus,
and lower H3/H4ac levels at the IL-13 and TBX21 genes
(IL13 and TBX21, respectively) [84]. The infants from the
fish oil-supplemented women were found to have lower
risk of developing allergic diseases [81, 82].

Both passive (prenatal and postnatal) and active
tobacco smoke exposures are a well-known extrinsic
factors affecting the risk of allergic disorders, especially
asthma, and this effect was found to be associated with
(and thus is thought to be at least partly mediated by)
changes in DNA methylation patterns [5, 6]. Exposure to
passive smoking diminished corticosteroid sensitivity of
alveolar macrophages obtained from children with severe
asthma and was accompanied by lower HDAC2 expres-
sion and activity. This possibly explains the unfavorable
effect [85] and suggests that histone modifications, spe-
cifically histone acetylation, are also involved.

The text in this review has been selective in discussing
the field and the reader is advised to consult Tables 2 and
3 for a more comprehensive appreciation of the wider lit-
erature review.

Conclusions and future perspectives
The results of our systematic literature assessment demon-
strate a growing interest in the contribution of histone mod-
ifications in regulating the development of allergic disorders
and, at the same time, provide evidence supporting this con-
tribution. The role of histone modification is manifested at
least at two levels. One involves the regulation of cells par-
ticipating in the allergic inflammatory reaction, namely the
inflammatory cells, T cells and macrophages, and the local
tissue cells, such as (myo-) fibroblasts, which contribute to
remodeling of airways. The other is the direct relationships
between histone modifications and allergic phenotypes.
Furthermore, experimental observations of effects of
histone marks modifying substances, e.g. HDACis or
HMTis, suggest the potential application of histone epi-
genome editing in the treatment of allergies [35, 86—-92].
Such therapies do not need to be simply restricted to his-
tone-modifying enzyme inhibitors but may also include
more targeted approaches based on e.g. CRISPR/dCas9
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system [6, 92] or antisense molecules [6, 93—95]. Others
include nutrients [71] or even bio-physical interventions
[96]. Finally, also diagnostic/prognostic tools for allergic
traits based on epigenetic patterns/signatures could pos-
sibly be developed in future, as suggested by several stud-
ies on DNA methylation [6, 97-99].

This review provides a systematic update of the cur-
rent knowledge on the contribution of histone modifi-
cations to allergic inflammation and disorders.
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