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Abstract 

Background:  Asthma is an important non-communicable disease worldwide. DNA methylation is associated with 
the occurrence and development of asthma. We are aimed at assuring differential expressed genes (DEGs) modified 
by aberrantly methylated genes (DMGs) and pathways related to asthma by integrating bioinformatics analysis.

Methods:  One mRNA dataset (GSE64913) and one gene methylation dataset (GSE137716) were selected from the 
Gene Expression Omnibus (GEO) database. Functional enrichment analysis was performed using GeneCodies 4.0 
database. All gene expression matrices were analyzed by Gene set enrichment analysis (GSEA) software. STRING was 
applied to construct a protein-protein interaction (PPI) network to find the hub genes. Then, electronic validation was 
performed to verify the hub genes, followed by the evaluation of diagnostic value. Eventually, quantitative real-time 
polymerase chain reaction (qRT-PCR) was utilized to detect the expression of hub genes.

Results:  In total, 14 hypomethylated/high-expression genes and 10 hypermethylated/low-expression genes were 
obtained in asthma. Among them, 10 hub genes were identified in the PPI network. Functional analysis demonstrated 
that the differentially methylated/expressed genes were primarily associated with the lung development, cytosol 
and protein binding. Notably, HLA-DOA was enriched in asthma. FKBP5, WNT5A, TM4SF1, PDK4, EPAS1 and GMPR had 
potential diagnostic value for asthma.

Conclusion:  The project explored the pathogenesis of asthma, which may provide a research basis for the prediction 
and the drug development of asthma.
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Background
Asthma is a heterogeneous disease affecting people all 
over the world, characterized by chronic inflammation 
of the airway [1, 2]. It has a substantial impact on quality 
of life for many people [3]. Around 300  million people 
suffer from asthma, and it is likely that by 2025 a further 

100  million may be influenced [3]. It is demonstrated 
that asthma is a complicated multifactorial disease 
whose etiology is attributed to interactions between 
genetic susceptibility, host factors and environmental 
exposures [3]. The mechanisms of asthma include airway 
inflammation, control of airway tone and reactivity [3, 
4]. However, the underlying pathogenesis of asthma is 
poorly understood.

Epigenetics is the heritable alteration of gene expression 
unrelated to changes in DNA sequence [5]. Epigenetics 
is the link between environmental factors and genetic 
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susceptibility, causing the disorder of development 
and function of the body’s immune system via affecting 
gene modification and regulating the function and 
characteristics of genetic genes [6, 7]. DNA methylation 
is the earliest and most significant modification in 
epigenetic regulation, which is involved in the complex 
interaction between gene and environment, playing a 
vital role in the occurrence of asthma [8]. Recent findings 
demonstrate that the environment and underlying 
genetic sequence variation could influence DNA 
methylation, which seems to modify the risk conferred 
by genetic variants for various phenotypes of asthma [8]. 
Nevertheless, it is still difficult to determine the certain 
genes and pathways.

High-throughput transcriptome integration analysis 
is able to collect the analysis results of related studies 
published on the same issue in order to obtain more 
accurate outcomes. It can produce significantly 
differentially expressed genes (DEGs) to avoid the 
inaccuracies of single research. Among all kinds of 
omics techniques, transcriptomics is the first developed 
and most widely applied. Microarray is the earliest and 
most widely utilized in transcriptome research and 
becomes a stable and reliable experimental technique. 
The development and application of microarray based 
on high-throughput sequencing may set the stage for the 
comprehensive study of the pathogenesis of asthma.

In this study, one gene expression dataset (GSE34913) 
and one gene methylation dataset (GSE137716) were 
obtained from Gene Expression Omnibus (GEO) to 
identify differentially methylated genes (DMGs) and 
DEGs. Various biological information databases were 
used to perform functional annotation of the DEGs, 
mining biological information under the microarray 
and screening out the key genes and crucial signaling 
pathways that affect the occurrence and development of 
asthma. Our study may enhance the understanding and 
development in regard to the gene expression of asthma.

Methods
Microarray data
The datasets were retrieved from GEO dataset by 
searching keywords “Asthma” and “Homo sapiens” 
[porgn: txid9606]. Datasets whose type were “Expression 
profiling by array” and “Methylation profiling by array” 
and meet the following criteria were included in this 
study: (1) the selected datasets must be genome-wide 
mRNA transcriptome data and DNA methylation 
data; (2) the data were obtained from airway epithelial 
samples of asthma and normal controls; (3) standardized 
or original datasets. The gene expression microarray 
(GSE64193) and the gene methylation microarray 
(GSE137716) were obtained. In total, 28 cases and 

42 normal controls were included in GSE64193. The 
platform of the gene expression dataset was GPL570 
[HG-U133_Plus_2] Affymetix human genome U133 
Plus 2.0 array. For the gene methylation microarray, 
GSE137716 consisted of 9 cases and 7 normal controls. 
The gene methylation dataset used the platform 
GPL3534 Illumina HumanMethylation450 BeadChip 
(HumanMethylation450_15017482).

Data acquisition and processing
Probes were mapped to genes, and the mean value of 
multiple probes corresponding to one gene was taken 
as the expression level of the gene. Limma package of 
software R-4.0.5 was utilized to perform the differential 
analysis for mRNA expression. P-Value < 0.05 and 
|log2fold change (FC)| > 0.5 were used as the cut-off 
standards to obtain DEGs. CHAMP was utilized to 
perform the differentially methylated analysis for the 
methylated dataset. P-Value < 0.05 and |Δβ| > 0.1 were 
set as screening criteria to obtain DMGs. Eventually, 
we intersected the DEGs and genes in the DMGs to 
obtain the hypermethylated/low-expression genes and 
hypomethylated/high-expression genes.

Functional analysis
Functional enrichment analysis of Gene ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
was conducted on differentially methylated/expressed 
genes via GeneCodis4.0 database. The screening standard 
was false discovery rate (FDR) < 0.05. In addition, setting 
P-value < 0.05 as screening criterion, we performed GSEA 
on all genes expression matrices.

Analysis of protein‑protein interaction (PPI) network
For the purpose of investigating the protein interaction 
between the selected differentially methylated/expressed 
genes, we utilized the STRING database to construct a PPI 
network. Interaction score of 0.4 was considered as the 
cut-off criterion. Then, hub genes in the PPI network were 
filtered via CytoHubba plug-in. The intersection of the top 
10 genes identified by MCC (Maximal Clique Centrality), 
MNC (Maximum Neighborhood Component), Degree, EPC 
(Edge Percolated Component), and closeness algorithms was 
selected and sorted, and 10 hub genes were finally selected.

ROC analysis and and expression validation of hub genes
ROC curves of differentially methylated/expressed hub 
genes were plotted with pROC package and area under 
curve (AUC) of each curve was calculated to evaluate 
the diagnostic value. In addition, GSE85567 dataset 
was downloaded from GEO for conducting electronic 
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validation of differentially methylated/expressed hub 
genes.

Quantitative real‑time polymerase chain reaction 
(qRT‑PCR)
A total of 30 human blood samples (13 cases and 17 
normal controls) were included in this study. some 
DEGs were selected as candidate genes for the detection. 
GAPDH and ACTB were used as reference genes. RNA 
samples were extracted from the collected samples. 
The primers of the target gene and the reference gene 
were utilized for amplification. The melting curve 
analysis was simultaneously conducted at 60–95℃. 
Amplification products were analyzed by 1.5% agarose 
RNA electrophoresis. Samples were then screened out 
to perform qRT-PCR assay on the basis of the results of 
agarose electrophoresis. Eventually, according to the raw 
results, relative quantitative results of target genes were 
calculated on the basis of the formula of 2−△△ct.

Results
Screening of differentially methylated/expressed genes 
in asthma
Totally, 245 DEGs were identified after differential 
analysis, including 113 up-regulated and 132 down-
regulated genes. The volcano plot and heat maps 
of 245 DEGs were shown in Fig.  1. A total of 8447 
differentially methylated sites and 3494 DMGs were 
obtained, including 1351 hypermethylated genes and 
2143 hypomethylated genes. Volcanic and Manhattan 
maps of 3494 DMGs are elucidated in Fig.  2. Then, 
through the intersection of 1351 hypermethylated genes 
and 132 down-regulated genes, 10 hypermethylated/
down-regulated genes were obtained, including GRP, 

KCNA1, WNT5A, HLA-DOA, STEAP2, EPAS1, 
SLC23A1, MSMB, WIF1, and IFIT1. In addition, 14 
hypomethylation/upregulated genes were obtained 
through the intersection of 2143 hypomethylation genes 
and 113 up-regulated genes, including FKBP5, CD109, 
CEACAM5, PDK4, PTPRH, TM4SF1, HN1, ZBTB16, 
POSTN, MX2, GMPR, C16orf54, CCL26, and NR4A3 
(Fig. 3).

GO and KEGG enrichment analysis
GO enrichment analysis showed that the differentially 
methylated/expressed genes are portrayed in Fig. 4 A. For 
biological process (BP), the genes were mainly linked to 
the lung development, positive regulation of ossification, 
positive regulation of cartilage development and 
negative regulation of anoikis. The cellular component 
(CC) enrichment analysis demonstrated that cytosol, 
extracellular region, extracellular space and cell surface 
were correlated with the genes. The molecular function 
(MF) analysis exhibited that the genes were mainly 
enriched in protein binding, receptor ligand activity and 
receptor tyrosine kinase-like orphan receptor binding. 
The KEGG pathway analysis showed that the analyzed 
genes were primarily linked to influenza A, pathways in 
cancer, transcriptional misregulation in cancer, hepatitis 
C, wnt signaling pathway, human papillomavirus 
infection, asthma, autoimmune thyroid disease and type 
I diabetes mellitus (Fig. 4B).

GSEA analysis
We finally obtained eight significantly up-regulated gene sets 
in asthma, including AMINO SUGAR AND NUCLEOTIDE 
SUGAR METABOLISM, FRUCTOSE AND MANNOSE 
METABOLISM, CARDIAC MUSCLE CONTRACTION, 

Fig. 1    Analysis of DEGs in GSE64913 dataset. A the volcano plot of 245 DEGs; B the heat map of the DEGs.
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H Y P E RT R O P H I C C A R D I O M Y O PAT H Y H C M ,  
GLYCOLYSISGLUCONEOGENESIS,GLYCOSAMINO
GLYCANDEGRADATION,LIPID METABOLISM and  
PARKINSONS DISEASE (Fig.  5A-H). Two gene sets, 
NOTCH SIGNALING PATHWAY and DORSO VENTRAL 
AXIS FORMATION, were down-regulated in asthma 
(Fig. 5I, J).

Construction of PPI networks
The PPI network (including 40 interacting gene pairs) 
obtained was presented in Fig.  6. Top 10 hub genes, 
consisting of POSTN, PDK4, EPAS1, FKBP5, ZBTB16, 
WNT5A, TM4SF1, NR4A3, GMPR and WIF1, were 
screened by the cytoHubba in Cytoscape software using 
five algorithms (Table 1). Hub genes in the PPI network 
are elucidated in Fig.  6. Among which, the top 3 hub 
genes were POSTN, PDK4 and EPAS1. FKBP5 was the 
only one gene that belongs to the top 10 up-regulated 
DEGs.

ROC analysis and expression validation of hub genes
The ROC curves of 6 differentially methylated/expressed 
hub genes are displayed in Fig.  7. The AUC value 
of FKBP5 (AUC = 0.832), WNT5A (AUC = 0.813), 
TM4SF1 (AUC = 0.769), PDK4 (AUC = 0.753), EPAS1 
(AUC = 0.748) and GMPR (AUC = 0.705) was more than 
0.7, which suggesting higher diagnostic value for asthma. 
Additionally, GSE85567 dataset was used for electronic 
expression validation of FKBP5, ZBTB16, PDK4, NR4A3 
and WNT5A (Fig.  8). Expression trends of these genes 
were in line with our study.

Detection of RT‑qPCR
As illustrated in Fig. 9, PDK4 (P-value < 0.001) and ZBTB16 
(P-value < 0.01) were up-regulated in asthma group, while 
WNT5A (P-value < 0.05), NR4A3 (P-value < 0.001) and 
WIF1 (P-value < 0.05) were down-regulated. The FKBP5 and 
GMPR did not show statistically significant.

Fig. 2    Analysis of DMGs in GSE137716 dataset. A The volcanic map of 3494 DMGs; B the Manhattan map of the 3494 DMGs.

Fig. 3    Differentially methylated/expressed genes. A Hypomethylated and up-regulated genes; B hypermethylated and down-regulated genes
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Fig. 4    The functional enrichment analysis of all the differentially methylated/expressed genes. A The GO annotation. BP  biological process, CC 
cellular component, MF molecular function; B the KEGG of differentially methylated/genes

Fig. 5    The GSEA of all genes. A–H Up-regulated pathways in the asthma group; I-J down-regulated pathways in the asthma group
(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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Discussion
Analysis of DEGs related to disease based on gene 
database has become a hot research modality in modern 
biomedicine [9]. In the current study, we identified the 
DEGs and DMGs in asthma compared with normal 
controls on the basis of high-throughput transcriptome 
integration analysis. The genes that were both 
hypermethylated/low-expression and hypomethylated/
high-expression were obtained. We filtered and verified 
several hub genes and candidate genes related to asthma 
as well.

GO enrichment analysis of the differentially 
methylated/expressed genes was mainly enriched in 
the biological processes of lung development, positive 
regulation of ossification, positive regulation of cartilage 
development, negative regulation of anoikis and 
planar cell polarity pathway involved in pericardium 
morphogenesis. The lung development starts at 4 

weeks of gestation and continues into early childhood, 
and bronchopulmonary dysplasia is attributed to the 
inadequate development of bronchial and lung [10]. 
Extensive researches of lung development have been 
conducted, generating new insights into the derivations 
of the different cell lineages existing in the lung and the 
molecular pathways that regulate these lineages, which 
contribute to the novel understandings of acquired 
lung diseases including asthma and COPD [11]. Hence, 
the outcome is consistent with our study of the GO 
enrichment. In addition, the CC analysis showed that 
these differentially methylated/expressed genes were 
primarily involved in cytosol, extracellular region, 
extracellular space, cell surface and the apical plasma 
membrane. Protein binding, receptor ligand activity, 
receptor tyrosine kinase-like orphan receptor binding, 
nucleobase transmenbrane transporter activity and 
L-ascorbic acid transmembrane transporter activity were 
significantly enriched molecular functions. Significantly 
enriched KEGG pathways included influenza A, pathways 
in cancer, and transcriptional misregulation in cancer. 
Notably, HLA-DOA, a hypermethylated/low-expression 
gene, was only one gene that enriched in the pathway of 
asthma. HLA-DO is a non-classical class II heterodimer 
consisting of ɑ and β chains, which are encoded by the 
HLA-DOA and HLA-DOB genes located in the HLA 
class-II region of MHC [12–14]. In the previous study, 
HLA-DOA genes were found a remarkable association 
with increased risk of diisocyanate-induced asthma [13], 
which revealed the closely correlation between HLA-
DOA and asthma and provided a promising direction of 
the pathogenesis of asthma.

The analysis of GSEA found that the genes were mostly 
enriched in metabolism-related pathways. Among which, 

Fig. 6    PPI networks of 24 differentially methylated/expressed genes and 10 hub genes. A PPI network of differentially methylated/expressed 
genes; B PPI network of 10 hub genes. The darker the color is, the more important it is. Nodes with a black border were DEGs derived from top 10 
DEGs.

Table 1  Hub genes identified via five algorithms

MCC maximal clique centrality, MNC maximum neighborhood component, EPC 
edge percolated component

Gene MCC MNC Degree EPC Closeness

POSTN 18 7 9 12.973 14

PDK4 16 6 6 12.679 12.16667

EPAS1 16 6 6 12.606 11.66667

FKBP5 11 6 7 12.701 13.16667

ZBTB16 10 5 5 12.316 11

WNT5A 10 5 5 12.247 11.16667

TM4SF1 9 4 5 11.962 11.83333

NR4A3 9 4 5 12.111 10.91667

GMPR 7 4 5 11.73 11.16667

WIF1 5 3 4 11.341 10.91667
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glucose metabolism, linoleic acid, arachidonic acid, 
nucleotide metabolism, energy metabolism and a variety 
of amino acids metabolism have been reported the 
significant differences existing between asthma patients 
and healthy controls [15–17].

The construction of PPI network of differentially 
methylated/expressed genes offered a method of 
identifying their functional connection, Cytoscape plugin 
cytoHubba provides 11 topological analysis methods 
including Degree, Edge Percolated Component (EPC), 
Maximum Neighborhood Component (MNC), Density 
of Maximum Neighborhood Component (DMNC), 
Maximal Clique Centrality (MCC) and six centralities 
(Bottleneck, EcCentricity, Closeness, Radiality, 
Betweenness, and Stress) based on shortest paths. There 
are no obvious advantages and disadvantages among 
algorithms, and different algorithms focus on different 
topological features. In general, MCC has proved to be a 
more accurate method for predicting important targets 
[18], MNC can be applied to discover some unrecognized 
hubs from previous dataset [19], Degree can be used to 
predict key proteins, proteins with a high Degree were 

more likely to be key proteins[20], EPC was used to 
explore protein interaction networks [21], Closeness 
was a topology analysis method based on shortest path 
[22]. In the previous research, MCC, MNC, Degree, EPC, 
and closeness algorithms were more commonly used 
[23, 24]. In this study, the above five algorithms were 
used to screen out the top 10 hub genes. Among them, 
PDK4, FKBP5, ZBTB16, WNT5A, GMPR and WIF1 are 
reported to be associated with asthma in the previous 
researches. NR4A3 is linked to the pulmonary vascular 
remolding. The ROC curves illustrated that FKBP5, 
WNT5A, PDK4, and GMPR had potential diagnostic 
value for asthma.

Pyruvate dehydrogenase kinase 4 (PDK4), one of four 
PDK isoenzymes expressed in a tissue-specific manner 
in mammals, is an important mitochondrial matrix 
enzyme in cellular energy regulation [25]. PDK4 is the 
main isoform in tissues demanding high energy, such 
as heart, skeletal muscle, lactating mammary gland, 
liver and vascular tissue [25–27]. Lee et  al. found 
that PDK4 was up-regulated in the calcified vessels of 
atherosclerosis patients [27]. The data of researches 

Fig. 7  ROC curves of FKBP5 A, WNT5A B, TM4SF1 C, PDK4 D, EPAS1 E and GMPR F 
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demonstrated that PDK4 was a novel modulator of the 
integrity of the mitochondria-associated ER membrane 
(MAM) [25, 28–30]. New evidence confirmed that the 
repressive effects of the cornerstone of treatment for 
asthma, glucocorticoids, linked to the inflammatory 
pathways and genes and PDK4 can regulate glucose 
metabolism to explain the metabolic effects of 
glucocorticoids [31].

FK506-binding protein 5(FKBP5) is a 51-kDa protein 
with a C-terminal including a three-unit domain of 
tetratricopeptide repeat motifs that interact with a 
few proteins [32–35]. FKBP1 regulates the response to 
corticosteroids which are the most effective controllers 
of asthma [16]. Sura et al. [16] exhibited the association 
of FKBP5 polymorphism with asthma susceptibility in 
patients with asthma. Furthermore, evidence revealed 
that airway dysbiosis was linked to clinical characteristics 

Fig. 8  Expression validation of FKBP5 A, ZBTB16 B, PDK4 C, NR4A3 D and WNT5A E in GSE85567 dataset

Fig. 9    RT-qPCR validation of PDK4, ZBTB16, WNT5A, NR4A3 and 
WIF1. “*” represents P-value < 0.05; “**” represents P-value < 0.01; “***” 
represented P-value < 0.001
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in asthma and bacterial microbiota were correlated with 
specific airway epithelial gene expression signatures [36]. 
FKBP5 gene expression is associated with Actinobacteria 
[36].

Zinc finger and BTB domain containing 16 (ZBTB16) 
encodes a transcription factor [37]. Many biological 
processes are associated with ZBTB16 including stem 
cell maintenance and proliferation, spermatogenesis, 
hematopoiesis, metabolism, and immunity [38, 39]. The 
correlation between ZBTB16 and asthma is embodied in 
the treatment of asthma using inhaled glucocorticoids or 
corticosteroids (ICS), which was indicated in the study 
[40] that increased expression of ZBTB16 could reduce 
inflammatory signaling and gene expression, which could 
contribute to the therapeutic efficacy of ICS.

The wingless-integrase-1 (WNT) signaling pathways, 
composed of a family of secreted glycoproteins [41–
43], regulate various process fundamental to normal 
development, including cell proliferation, polarity, 
differentiation, adhesion and motility [18, 44, 45]. 
WNT5A is a non-canonical WNT ligand that is highly 
evolutionary conserved [18]. Previous studies have 
illustrated that WNT5A is utilized the airway remodeling 
on multiple levels [41]. Extracellular matrix turnover 
is increased in human airway smooth muscle (ASM) by 
WNT5A via functional interactions with TGF-β [46]. 
In addition, therapy of human ASM with recombinant 
WNT5A enhances formation and contractility of 
actin filaments [47]. Notably, WNT5A expression in 
bronchial biopsies is linked to Th2-high asthma [48]. Wnt 
inhibitory factor-1(WIF1) is a Wnt antagonist and tumor 
suppressor [49]. Wang et  al. [50] concluded that WIF1 
was associated with lung function and participating in 
inflammatory pathways exerts an effect on the level of 
lung function.

Conclusion
Combining the gene expressed microarrays and gene 
methylation microarrays via integrated bioinformatics 
analysis tools, several hub genes and related pathways 
as well as candidate genes associated with asthma were 
screened, which may provide new insights to uncover 
the underlying molecular mechanisms, exploring the 
novel clues for drug development and develop optimal 
biomarkers for the precise diagnosis and treatment of 
asthma. Nevertheless, the specimen size is small. Further 
studies and experiments will be imperative to confirm 
these genes and pathways that are connected with 
asthma.
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