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Abstract 

Severe asthma imposes a physical and economic burden on both patients and society. As chromatin regulators (CRs) 
influence the progression of multiple diseases through epigenetic mechanisms, we aimed to study the role of CRs in 
patients with severe asthma. Transcriptome data (GSE143303) from 47 patients with severe asthma and 13 healthy 
participants was downloaded from the Gene Expression Omnibus database. Enrichment analysis was performed to 
investigate the functions of differentially expressed CRs between the groups. We identified 80 differentially expressed 
CRs; they were mainly enriched in histone modification, chromatin organization, and lysine degradation. A protein–
protein interaction network was then constructed. The analyzed immune scores were different between sick and 
healthy individuals. Thus, CRs with a high correlation in the immune analysis, SMARCC1, SETD2, KMT2B, and CHD8, 
were used to construct a nomogram model. Finally, using online prediction tools, we determined that lanatoside C, 
cefepime, and methapyrilene may be potentially effective drugs in the treatment of severe asthma. The nomogram 
constructed using the four CRs, SMARCC1, SETD2, KMT2B, and CHD8, may be a useful tool for predicting the prognosis 
of patients with severe asthma. This study provided new insights into the role of CRs in severe asthma.
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Introduction
Currently, there are approximately 300  million patients 
with asthma worldwide [35]. As a diffuse respiratory 
disease, the main pathological features of asthma include 
airway inflammation and remodeling, which result in 
airflow limitation and bronchial hyperresponsiveness 
[17]. Standard inhalation therapy is an effective means 
of controlling the condition of most asthmatic patients. 
However, approximately 10% of the patients with asthma 
do not benefit from such therapies [13]; Pelaia et al. [28]. 
Patients with asthma who require high-dose inhaled 
corticosteroid treatments and a second controller to 
prevent uncontrolled asthma attacks or who remain 
uncontrolled despite these treatments are considered to 

have severe asthma [38]. The Global Initiative for Asthma 
(GINA) recommends the corticosteroid, azithromycin, 
anti-IL4R, anti-thymic stromal lymphopoietin, long-
acting muscarine anticholinergic, short-acting β-agonists, 
and anti-IgE antibody omalizumab for the treatment of 
severe asthma [31]. However, as a heterogeneous disease, 
severe asthma requires complex treatments [14].

Epigenetics refers to those modifications that alter 
chromatin and regulate gene expression without 
altering the underlying DNA sequence [4]. Chromatin 
regulators (CRs) are important factors in epigenetics; 
they are mainly involved in DNA methylation, histone 
modification, chromatin remodeling, and the production 
of miRNAs that affect protein concentrations in the cell 
[1]. Defective chromatin regulation is associated with the 
development of multiple diseases [11]. Corticosteroids 
have been among the main modalities for the treatment of 
asthma, but possible reasons for their inefficacy in severe 
asthma are the failure to recruit HDAC2/SIRT1 and the 
presence of oxidatively/post-translationally modified 

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit 
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line 
to the data.

Allergy, Asthma & Clinical Immunology

*Correspondence:
Yaning Gao
747808201@qq.com
1 Beijing Jingmei Group General Hospital, Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13223-023-00796-1&domain=pdf


Page 2 of 9Gao et al. Allergy, Asthma & Clinical Immunology           (2023) 19:43 

HDAC2/SIRT1 in asthmatics [29]. Epigenetic markers 
regulate many processes in T lymphocytes in asthma. 
Furthermore, the identification of DNA methylation of 
specific nucleotides as biomarkers of asthma has been 
previously reported [44]. However, an in-depth study 
on the role of CRs in severe asthma is important for the 
treatment and prognosis of this condition.

In this study, we analyzed previously determined 
gene expression and clinical data of patients with severe 
asthma and healthy individuals. We also sorted the 
genes encoding CRs based on information from previous 
literature. The comprehensive analysis of the data was 
expected to provide new insights into the treatment and 
prognosis of severe asthma.

Materials and methods
Data collection and preprocessing
Information from accession GSE143303 was 
downloaded from the Gene Expression Omnibus (GEO) 
database [5] of the National Center for Biotechnology 
Information (NCBI); it includes transcriptome data from 
endobronchial biopsy samples of 47 patients with severe 
asthma and 13 healthy participants [34]. In addition, we 
curated information from 870 CRs from the published 
literature [23]. RStudio (version 1.4.1717.0) was used 
to normalize the gene expression profile of GSE143303. 
Subsequently, expression matrices of CRs in patients 
with severe asthma were obtained [15]. The limma 
package was used to identify differentially expressed CRs 
according to the following criteria: |log fold change (FC)| 
≥ 0.2 and P < 0.05.

Patients with severe asthma included in this study 
were defined as those treated for GINA step 4 or 5, 
requiring high doses of inhaled corticosteroids (ICS) and 
a second “controller” after which the condition remained 
uncontrolled and either had persistent symptoms and/
or worsened. Specifically, the high dose of ICS refers to 
> 500 µg fluticasone or equivalent per day [31]; Sánchez-
Ovando et  al. [32]. Clinical characteristics of patients 
with severe asthma and healthy controls have been 
presented in a previously published article (Sánchez‐
Ovando et al. 2021).

Enrichment analysis of differentially expressed CRs
To understand the potential function of the differentially 
expressed CRs, Gene Ontology (GO) analysis, including 
the GO terms molecular function (MF), biological 
process (BP), and cellular component (CC), was 
performed using the aclusterProfiler R package. A Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway-
based analysis was also performed. Enrichment results 
were visualized using the enrichplot package.

Construction a protein to protein interaction (PPI) network
Using STRING, a PPI network of differentially 
expressed CRs was constructed [37]. The top 10 hub 
genes were identified by applying the MCC algorithm 
of the cytoHubba plugin of Cytoscape.

Immune function analysis
The ssGSEA, GSEABase, and GSVA algorithms were 
used to evaluate the infiltration of 16 different immune 
cell types and 13 immune functions in samples from 
patients with severe asthma. The correlation between 
immune-infiltrating cells and immune functions was 
analyzed using the corrplot package in R.

In addition, the psych and ggcorrplot packages in R 
were used to analyze the correlations between the hub 
genes in the PPI network and immune-infiltrating cells 
and immune functions in severe asthma cases.

Constructing a prognostic prediction model
CRs with a high correlation in immune analyses were 
used to construct a prognostic model of severe asthma. 
A receiver operating characteristic (ROC) curve was 
used to verify the accuracy of the model.

Identifying potential drugs for the treatment of severe 
asthma
The CRs used to construct the model were entered into 
the Enrichr online tool [20] and the DSigDB database 
was used to predict the 10 most probable effective 
therapeutic drugs for severe asthma [43].

Prediction of miRNAs targeting model genes
The TargetScan database (https:// www. targe tscan. org/ 
vert_ 80/) at the Enrichr online website was used to 
predict the miRNAs that target those genes used for the 
construction of the prognostic prediction model, and a 
regulatory network was constructed.

Results
Differentially expressed CRs
When comparing the transcriptome data of patients 
with severe asthma with those of healthy individuals, 
we identified 80 differentially expressed CRs, including 
32 upregulated and 48 downregulated genes (Fig. 1).

In addition, GO and KEGG analyses were performed 
to explore the potential functions and pathways 
involved in the differential expression of CRs. GO 
analysis indicated that these genes were mainly involved 
in histone modification, chromatin organization, 
peptidyl-lysine modification, transcription regulator 
complex, and transcription coregulator activity 

https://www.targetscan.org/vert_80/
https://www.targetscan.org/vert_80/
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(Fig.  2A), and the enriched pathways were lysine 
degradation and cell cycle (Fig. 2B).

Immune analysis of severe asthma
We compared the immune cell infiltration scores from 
patients with severe asthma and healthy controls. The 
results showed that the scores for B cells, CD8 + T 
cells, iDCs, mast cells, NK cells, T helper cells, and 
Th2 cells were significantly higher in healthy controls 
than in patients with severe asthma (Fig.  3A) (P < 0.05). 
In addition, the immune function scores of the two 
groups were compared. The results revealed that, in the 

healthy group, the participants’ APC co-stimulation, 
immune checkpoint, and T cell co-inhibition scores were 
significantly higher than in patients with severe asthma 
(Fig. 3B) (P < 0.05).

Furthermore, the correlation analysis basically showed 
a positive correlation between immune cells (Fig.  3C). 
Similar positive correlations were also observed between 
immune functions (Fig. 3D).

Construction of a prognostic model
A PPI network was constructed; it included 80 nodes 
and 320 edges (Fig.  4A). The ten CRs, SMARCB1, 
CHD8, EP300, SETD1A, KMT2B, KMT2A, SETD2, 
CHD4, SMARCC1, and SETDB1, in the PPI network 
with the highest correlations with immune genes and 
immune functions were further analyzed (Fig.  4B). 
The results showed a negative correlation between 
SMARCC1 and T helper cells (r = −0.48) and a negative 
correlation between SETD2 and APC co-inhibition, 
para-inflammation, treg, and type I IFN responses (r 
= −0.48, −0.52, −0.55, and − 0.49, respectively). There 
were also positive correlations between KMT2B and APC 
co-inhibition (r = 0.57) and between CHD8 and mast cells 
(r = 0.48).

These four genes, SMARCC1, SETD2, KMT2B, and 
CHD8, were used to construct a nomogram model 
for predicting the prognosis of patients with severe 
asthma (Fig.  5A). Furthermore, ROC curves showed 
that the AUC of this model was 0.908, indicating a good 
predictive performance (Fig. 5B). The calibration curves 
showed that the model predictions and actual values were 
generally consistent under ideal conditions (Fig. 5C).

Fig. 1 Volcano plot of differentially expressed chromatin regulators 
between patients with severe asthma and healthy individuals

Fig. 2 Enrichment analysis of differentially expressed chromatin regulators between patients with severe asthma and healthy individuals. 
A Gene Ontology enrichment analysis. B Kyoto Encyclopedia of Genes and Genomes-based pathway enrichment analysis. MF molecular 
function, BP biological process, CC cellular component
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Potential drugs for treating severe asthma
DSigDB was used to predict drugs for the treatment 
of severe asthma, and the results showed that the 
ten most effective drugs would be lanatoside C, 
cefepime, methapyrilene, sulpiride, vitamin E, ouabain, 
metoclopramide, pramocaine, dirithromycin, and 
tamibarotene.

Construction of an miRNA‑mRNA interaction network
We predicted the miRNAs upstream those genes used 
for the nomogram model and used them to construct an 
miRNA-mRNA interaction network (Fig. 6). According 
to our predictions, SMARCC1 is regulated by seven 
miRNAs (hsa-miR-1295, hsa-miR-1247, hsa-miR-1268, 
hsa-miR-3917, hsa-miR-585, hsa-miR-3200-3p, and 

Fig. 3 Immune analysis of patients with severe asthma and healthy subjects. A Immune cell scores of patients with severe asthma and healthy 
individuals. B Immune function scores of patients with severe asthma and healthy individuals. C Correlation analysis of immune cells. D Correlation 
analysis of immune functions
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hsa-miR-1268b), CHD8 is regulated by five (hsa-
miR-4632, hsa-miR-662, hsa-miR-4465-3p, hsa-
miR-3713, and hsa-miR-4738-5p), SETD2 is regulated 
by two (hsa-miR-3200-3p and hsa-miR-993), and 
KMT2B is only regulated by one (hsa-miR-4440).

Discussion
Approximately 10% of individuals with asthma are 
classified as having severe asthma. People with severe 
asthma not only have a heavy psychological and 
financial burden but also a high mortality rate [38]. 
Defects in chromatin regulation are involved in the 
development of various diseases [9]. To investigate the 
role of CRs in severe asthma, we screened for CRs that 
were differentially expressed between patients with 
severe asthma and healthy individuals. These CRs were 
subjected to enrichment and immunological analyses. A 
risk score was also constructed to assess the association 
between CRs and prognosis in patients with severe 
asthma.

The 80 differentially expressed CRs were mainly 
enriched in histone modification, chromatin 
organization, transcription regulator complex, 
transcription coregulator activity, lysine degradation, and 
cell cycle. Specialized histone modifications, as the core 
of chromatin control, can be removed, adjusted, or added 
to histone units [18]. It is known that, under specific 
conditions, naive CD4 + T cells are atypically activated, 
thus, they differentiate into a Th subpopulation cell type 
that drives the disease; this is a typical feature of asthma. 
Moreover, histone modification regulates cell lineage 
commitment in T cells [41], and different subtypes of 
T cells influence immune responses in asthma [39]. In 
addition, the Th17 cell lineage is subject to epigenetic 
plasticity through the remodeling of its chromatin 
structure [27]. A study found that genes associated with 

lysine levels may be also linked to reduced inflammation 
and the degradation of air pollutants, and that these 
genes are less abundant in asthmatics [21]. Furthermore, 
there are differences in serum metabolites between 
children with exacerbation-prone and non-exacerbation-
prone asthma, with significant differences in those from 
the lysine pathway [7].

B cells are a major component of the adaptive immune 
response to house dust mite allergens. Depletion of B 
cells in house dust mite-sensitive mice prior to house 
dust mite stimulation results in decreased allergic 
responses [40]. Mast cells also play a role in asthma by 
secreting mediators with pro-inflammatory and airway 
constrictive effects, such as histamine and bioactive 
lipids [24]. However, the role of NK cells in patients with 
asthma remains controversial. Studies have reported that 
NK cells can promote the regression of inflammation by 
inducing eosinophil apoptosis [6]. Impaired cytotoxicity 
of peripheral blood NK cells has also been found in 
patients with severe asthma, suggesting an impaired 
ability to manage severe asthmatic inflammation [3, 
10]. This study revealed differences in multiple immune 
cells between patients with severe asthma and healthy 
individuals.

To further investigate the relationship between CRs and 
prognosis in patients with severe asthma, we constructed 
a prognostic prediction model using the four identified 
key CRs: SMARCC1, CHD8, SETD2, and KMT2B. 
The model showed a good predictive performance for 
prognosis. It is known that the association of the SWI/
SNF chromatin remodeling complex with cell cycle 
checkpoint genes controls cell proliferation and that 
SMARCC1 is an important member of the SWI/SNF 
complex; SMARCC1 also plays an important role in 
development [8]. The SWI/SNF complex has been 
observed in chronic rhinosinusitis, and it is possibly 

Fig. 4 Gene interaction and immunity analyses. A Protein-protein interaction network of differentially expressed chromatin regulators between 
patients with severe asthma and healthy individuals. B Correlation among the ten top hub chromatin regulators in the protein-protein interaction 
network with immune genes and immune functions
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involved in the pathophysiology of the disease [19]. 
Patients with high blood eosinophil counts had lower 
levels of expression of the BAF155 protein, whereas 
patients with high histopathological eosinophil counts 
had lower expression of all SWI/SNF subunits [19].

SETD2 is a histone modifier responsible for the 
trimethylation of lysine 36 of histone H3 (H3K36) [22]. 
Air pollution has been linked to several lung diseases, 
and particulate matter of 10  μm in diameter (PM10) 
induces aneuploidy and leads to the generation of 
chromosomal instability in A549 cells by downregulating 

SETD2 [33]. Our model also involved KMT2B, which 
encodes an enzyme involved in histone H3 lysine 4 
(H3K4) methylation [26], and CHD8, which encodes for 
a member of the chromodomain-helicase-DNA binding 
protein family that has been reported to play a role in 
transcriptional regulation, epigenetic remodeling, and 
other processes [25].

To further investigate the role of model genes in severe 
asthma, we constructed an miRNA-mRNA regulatory 
network. The results showed that all genes, except 
KMT2B, were regulated by multiple miRNAs, suggesting 

Fig. 5 Nomogram model. A SMARCC1, SETD2, KMT2B, and CHD8 were used to construct a nomogram model to predict the prognosis of patients 
with severe asthma. B Receiver operating characteristic curve to determine the performance of the nomogram model. C Calibration curve
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complex regulatory relationships. In addition, predicted 
drugs also provide a basis for the future treatment of 
severe asthma.

We found that differentially expressed CRs are 
mainly involved in cell cycle pathways. Severe asthma 
is characterized by proliferation of airway smooth 
muscle (ASM) [12]. Stimulation, including growth 
factors and extracellular proteins, regulates mitosis, 
which in turn induces ASM cell proliferation [42]. The 
patients included in this study were partially treated 
with ICS or oral corticosteroids (OCS) in a previous 
study (Sánchez‐Ovando et al., 2021). The anti-asthmatic 
approach described above is an effective inhibitor of 
ASM cell proliferation. Corticosteroids inhibit the 
signaling pathways of cell cycle progression (Ammit and 
Panettieri Jr, 2001). Differentially expressed CRs have 
also been found to be involved in lysine degradation. 
Lysine residues can increase pro-inflammatory factor 
activity and affect collagen synthesis. Thus, lysine 
degradation can modulate airway inflammation and 
airway remodeling, which are key pathogenic features of 
asthma [21]. Drugs that target lysine may be important in 
the treatment of severe asthma.

CRs control chromatin structure and function by 
catalyzing and binding histone modifications and are 
regulators of epigenetics [30]. Asthma patients were 
found to have enhanced histone acetyltransferases 
activity and reduced histone deacetylases activity. These 
modifications may lead to increased expression of genes 
associated with the inflammatory response profile of 
asthma [16]. Another study related to differentially 
expressed chromatin-modifying enzymes found that 

cigarette smoke differentially affected the expression 
of epigenetic regulators in patients with chronic 
obstructive pulmonary disease, further regulating the 
expression of target genes [36]. This study is the first 
to investigate the role of differentially expressed CRs in 
severe asthma, which may provide new targets for the 
treatment of asthma in the future.

This study had some limitations. First, the sample 
size may not be sufficiently representative. Second, the 
results were not experimentally validated. Moreover, 
multiple prospective studies are still needed.

In conclusion, this study constructed a risk model 
with good predictive performance by screening for 
differentially expressed CRs between subjects with 
severe asthma and healthy individuals and by selecting 
hub CRs among them. The results of this study provide 
new insights into the mechanisms underlying CRs in 
severe asthma.
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