

# **MEETING ABSTRACT**

**Open Access** 

# Deep TCR repertoire sequencing reveals relative change in peanut specific clonotype in subjects undergoing rush oral immunotherapy

Philippe Bégin<sup>1,2\*</sup>, Kari C Nadeau<sup>1</sup>

From Canadian Society of Allergy and Clinical Immunology Annual Scientific Meeting 2014 Ottawa, ON, Canada. 23-26 October 2014

# **Background**

Oral immunotherapy is an emerging therapy currently under investigation for the treatment of food allergy [1]. Underlying mechanisms are thought to involve a switch in the food specific T cell response from Th2 to either Th1, Tr1 and/or Treg. It is unknown whether this change in response results from re-education of existing pathological food-specific T cells or from their replacement by new healthy T cells (change of guard hypothesis).

# **Methods**

The objective was to evaluate the clonal distribution of peanut specific T cell in subjects with peanut allergy and follow changes in clonotype with treatment using a high-throughput T cell receptor (TCR) sequencing platform. Peripheral blood mononuclear cells (PBMCs) from three subjects undergoing rush oral immunotherapy in a previous trial [2] and three control subjects on avoidance diet were cultured with peanut extract at baseline and at 9 and 18 months. Carboxyfluorescein succinimidyl ester (CFSE)-low peanut proliferating T cells were then isolated by fluorescence-activated cell sorting (FACS) and TCR analysis was performed.

#### Results

The CFSE-low proliferating fraction was found to be comprised of between 2000 and 12,000 different T cell clones. However, only between 15 and 25% of proliferating T cells (from 100-400 different clones) were consistently found at all three time points and probably represented true peanut-specific T cells. While the

relative frequency of these peanut-specific clones was stable over time in subjects on avoidance diet (R=0.633 to 0.760), it was found to change in subjects undergoing oral immunotherapy (R= 0.123 to 0.350), following two characteristic patterns.

## **Conclusions**

Using a deep TCR sequencing platform, we found that only a fraction of CFSE-low peanut proliferating T cells were consistent in time and likely to represent true peanut specific T cells. Oral immunotherapy was associated with changes in relative frequency of clones within this fraction, which would support the change of guard hypothesis.

### Acknowledgements

P. Bégin was supported by AllerGen NCE Inc. (the Allergy, Gene and Environment Network), a member of the Networks of Centre of Excellence Canada program.

#### Authors' details

<sup>1</sup>Department of Pediatrics, Stanford University, Stanford, California, 94305-5208, USA. <sup>2</sup>Department of Medicine, University of Montreal, Montreal, Quebec, H3A 1A1, Canada.

Published: 18 December 2014

#### References

- 1. Bégin P, Chinthrajah RS, Nadeau KC: **Oral immunotherapy for the**
- treatment of food allergy. Hum Vaccin Immunother 2014, 10:8.
- Bégin P, Dominguez T, Wilson SP, Bacal L, Mehrotra A, Kausch B, Trela A, Tavassoli M, Hoyte E, O'Riordan G, Blakemore A, Seki S, Hamilton RG, Nadeau KC: Phase 1 results of safety and tolerability in a rush oral immunotherapy protocol to multiple foods using Omalizumab. Allergy, Asthma & Clinical Immunology 2014, 10:7.

#### doi:10.1186/1710-1492-10-S2-A53

Cite this article as: Bégin and Nadeau: Deep TCR repertoire sequencing reveals relative change in peanut specific clonotype in subjects undergoing rush oral immunotherapy. Allergy, Asthma and Clinical Immunology 2014 10(Suppl 2):A53.

Full list of author information is available at the end of the article



<sup>\*</sup> Correspondence: philippe.begin@umontreal.ca

<sup>&</sup>lt;sup>1</sup>Department of Pediatrics, Stanford University, Stanford, California, 94305-5208 USA