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Abstract 

Background and purpose:  New Zealand is a developed geographically isolated country in the South Pacific with a 
population of 4.4 million. Genetic diagnosis is the standard of care for most patients with primary immunodeficiency 
disorders (PIDs).

Methods:  Since 2005, we have offered a comprehensive genetic testing service for PIDs and other immune-related 
disorders with a published sequence. Here we present results for this program, over the first decade, between 2005 
and 2014.

Results:  We undertook testing in 228 index cases and 32 carriers during this time. The three most common test 
requests were for X-linked lymphoproliferative (XLP), tumour necrosis factor receptor associated periodic syndrome 
(TRAPS) and haemophagocytic lymphohistiocytosis (HLH). Of the 32 suspected XLP cases, positive diagnoses were 
established in only 2 patients. In contrast, genetic defects in 8 of 11 patients with suspected X-linked agammaglobu‑
linemia (XLA) were confirmed. Most XLA patients were initially identified from absence of B cells. Overall, positive 
diagnoses were made in about 23% of all tests requested. The diagnostic rate was lowest for several conditions with 
locus heterogeneity.

Conclusions:  Thorough clinical characterisation of patients can assist in prioritising which genes should be tested. 
The clinician-driven customised comprehensive genetic service has worked effectively for New Zealand. Next genera‑
tion sequencing will play an increasing role in disorders with locus heterogeneity.
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Background
Failure to effectively combat infections is a hallmark of 
immunodeficiencies (IDs) such as primary immuno-
deficiency disorders (PIDs) where rare genetic defects 
lead to compromised host defences. Affected patients 
are prone to recurrent and severe infections [1]. Some 
patients develop autoimmunity and malignancy because 
of immune dysregulation [2, 3]. The severity of these dis-
orders ranges from asymptomatic IgA deficiency to life 

threatening conditions such as severe combined immu-
nodeficiency (SCID). The majority of PIDs are mono-
genic disorders. Almost 300 genetic defects have so far 
been identified [4]. A delayed diagnosis can impact on 
prognosis if a patient has a life threatening disorder, such 
as presymptomatic males with X-linked lymphoprolifera-
tive syndrome (XLP) from SH2D1A or BIRC4 mutations 
[5].

New Zealand is a developed geographically isolated 
country with a population of 4.4 million in the South 
Pacific. A dedicated comprehensive customised genetic 
testing service for PIDs was established in 2005 [6]. The 
primary aim of the service was to offer rapid genetic 
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testing for any PID disorder with a published sequence. 
The service initially offered genetic testing for XLP and 
X-linked agammaglobulinemia (XLA). Over time, the 
scope of the service has broadened to include patients 
with other PIDs as well as haemophagocytic lymphohis-
tiocytosis (HLH) and atypical haemolytic uremic syn-
drome (aHUS) and periodic fever/autoinflammatory 
syndromes.

HLH is a rare but potentially fatal disease of uncon-
trolled immune activation. Genetic testing for HLH 
overlaps with testing for XLP. Similarly, genetic testing 
plays an important role in patients with aHUS. Identifi-
cation of the specific genetic defect impacts on clinical 
management of aHUS patients. Membrane cofactor pro-
tein (MCP, CD46) is a complement protein that protects 
organs from injury by complement. Mutations in MCP 
are associated with aHUS [7]. Patients with terminal 
renal failure can undergo successful renal transplantation 
if they only have an MCP mutation [8]. The transplanted 
kidney expresses normal levels of MCP and is protected 
against complement mediated damage. In contrast muta-
tions of factor H and I could damage a transplanted kid-
ney, hence the importance of undertaking genetic studies 
in patients with aHUS. This is particularly important 
given that eculizumab is not funded in New Zealand.

The service provides testing for periodic fever syn-
dromes. This group of disorders include cryopyrin-asso-
ciated periodic syndrome (CAPS), tumor necrosis factor 
receptor associated periodic syndrome (TRAPS), familial 
Mediterranean fever (FMF) and mevalonate kinase defi-
ciency (MKD). Identification of the exact genetic defect 
in these autoinflammatory disorders is very important as 
the treatments vary.

Tertiary hospitals offering PID testing services in devel-
oped and developing countries have reported a wide 
spectrum of PIDs within their respective communi-
ties [9–12]. Access to specialised clinical and laboratory 
resources differ among the countries, depending on the 
expertise and financial resources of each healthcare sys-
tem [13]. We have made the case for a national clinical 
service for PIDs in New Zealand [14]. It is hoped the cus-
tomised genetic testing service will be integrated into a 
future national PID service.

In this report, we review the results of patients referred 
to the LabPlus comprehensive customised genetic test-
ing service between 2005 and 2014. We also discuss the 
implications of future genetic testing with the advent of 
next generation sequencing (NGS).

Methods
The customised genetic testing service is clinician-driven 
and a test is rapidly developed if there is an appropriate 
clinical request. The service typically offers results within 

a week for smaller genes and up to three weeks for longer 
genes. In addition to the rapid turnaround time, it has 
also reduced the need to send samples to overseas labo-
ratories. For most of the genes tested, it has been much 
cheaper to undertake mutation analysis in New Zea-
land, compared with overseas laboratories. Twice weekly 
meetings are held to discuss cases and to review the 
results of other tests including protein-based assays and 
flow cytometry. The genetic testing strategy is based on 
detailed clinical and phenotypic data.

The service follows the guidelines for molecular diag-
nostic laboratories issued by the Centres for Disease 
Control [15] and is accredited by IANZ (International 
Accreditation New Zealand). The service has a yearly 
DNA sample exchange with overseas laboratories as part 
of the external quality assurance program. We are not 
aware of a formal external quality assurance program for 
PID genetic testing by organisations such as the College 
of American Pathologists.

Patients receive genetic counselling before blood is 
drawn. Results of testing are only meaningful if inter-
preted in the appropriate clinical context. As we show 
here, close consultation with clinicians increases the suc-
cess rate of testing as it helps prioritise genes for testing, 
based on phenotype. We have thus maintained a close 
working relationship with requesting clinicians, which 
has obviated the need for testing algorithms.

Reference gene sequences are downloaded from pub-
lic databases such as Genatlas and Ensembl. Intronic 
primers flanking exon regions are designed using Oligo 
version 6.44 (Molecular Biology Insights, Cascade, CO, 
USA) or Primer3 (SimGene.com). Primer sequences are 
also obtained from published literature. M13 adapter 
sequences are added to the 5′ terminus of primer 
sequences before submission for synthesis.

Genomic DNA is prepared from whole blood with the 
Puregene DNA purification kit (Gentra Systems, Min-
neapolis, MN, USA) [16]. PCR of genomic DNA is per-
formed using primers and cycling conditions as described 
in Roche FastStart Taq DNA polymerase instruction 
manual. Amplicons are treated with Illustra ExoProStar 
(GE Healthcare Life Sciences, Little Chalfont, UK). The 
sequencing reactions are performed with 5  pmol prim-
ers and BigDye® terminator cycle sequencing (Applied 
Biosystems, Foster City, CA). Sequencing products are 
added to Agentcourt CleanSeq (Beckman Coulter, Brea, 
CA), washed twice in 85% ethanol and analysed on an 
ABI PRISM® 3130xl Genetic Analyzer.

Genetic variants (single nucleotide polymorphisms and 
small insertions or deletions) are identified using SeqMan 
5.01 (DNASTAR, Madison, WI, USA) and referenced to 
respective allele frequencies determined in large popu-
lation studies (1000 Genomes and HapMap). Variants 
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present in less than 1% of the healthy population are fur-
ther analysed. We evaluate the in silico effect of amino 
acid substitution in non-synonymous SNPs using predic-
tion software Polyphen2 and SIFT. Clinical variants are 
also verified in ClinVar, disease specific registries/data-
bases and literature review.

Testing for F12 mutations (c.1032C > A, Thr328Lys) for 
patients with HAE with normal C1 inhibitor levels (HAE 
type III) was undertaken by Sonic Laboratories in Sydney.

Results
The service has experienced a steady increase in the 
number of gene testing requests in the 10-year period 
(Fig.  1a). At least 3 new genes were added to the test 
guide every year since 2007. We undertook at least half of 
the available gene tests on offer annually. As of 2014, the 
service offered gene tests for 30 PID genetic disorders.

We carried out testing on 228 index cases and 32 carri-
ers in 2005–2014. Test requests were received from vari-
ous clinical services in Auckland City Hospital and other 
hospitals around New Zealand (Fig.  1b). Almost half of 
the referrals came from the two public hospital immu-
nology services in Auckland. The adult immunology ser-
vice at Auckland City Hospital referred most of the tests 
and the remaining were from the paediatric immunology 
(Fig. 1c). Referrals from genetic services were usually for 
family studies and patients requiring carrier status test-
ing. The types of requests from the paediatric oncology/
haematology service were diverse. Approximately 40% of 
the requests were for suspected lymphoproliferative dis-
orders such as XLP or HLH.

The most frequent requests from the adult immunol-
ogy service were for TRAPS or hereditary angioedema 
(HAE). HAE patients were either tested for mutations 
of the C1 inhibitor (C1-INH, SERPING1) gene and/or 
F12. We did not identify any F12 mutations in patients 
with HAE with normal C1 inhibitor levels. We now only 
recommend testing if the angioedema does not respond 
to high dose antihistamines and the patient has normal 
complement studies.

From the paediatric immunology service, there were 
several requests for chronic granulomatous disease 
(CGD) testing. The causative genes in X-linked and auto-
somal recessive CGD were also tested in siblings and par-
ents. SCID gene testing was requested by both paediatric 
immunology and oncology/haematology services. These 
two services also requested testing for patients with sus-
pected lymphoproliferative disorders including XLP and 
HLH. As expected, most requests for aHUS were from 
the paediatric nephrology service.

Fifty three index patients (23% of the 228 patients) had 
positive genetic diagnoses (Table  1). A strong correla-
tion between phenotype and genotype exists for certain 

Fig. 1  a Number of gene tests requested annually (2005–2014), b 
Breakdown of different hospital services requesting genetic tests 
(2005–2014), c Paediatric and adult services of different specialities 
requesting genetic testing (2005–2014)



Page 4 of 9Woon and Ameratunga ﻿Allergy Asthma Clin Immunol  (2016) 12:65 

conditions. The rate of positive genetic diagnoses varied 
for different disorders. A high rate of genetic diagnosis 
was confirmed in patients with XLA, autosomal reces-
sive CGD, ectodermal dysplasia and immunodeficiency 

(EDA-ID), Griscelli type 2 and Shwachman–Diamond 
syndrome (SDS).

Eight of the 11 patients with suspected XLA were posi-
tively identified by mutational analysis (Table  1). XLA 

Table 1  Genetic testing results of patients referred to molecular immunology service (2005–2014)

Test Genes Patients Carriers? Index patients tested positiveb % tested positive

aHUS/C3 glomerulopathy CD46 15 1 7

CFH 1 7

CFI 0 0

ALPS CD95 7 0 0

APECED AIRE 1 0 0

CGD-AR NCF1 8 4 4 50

CGD-XL CYBB 3 1 3 100

CHARGE CHD7 1 0 0

C2 deficiency C2 1 0 0

CAPS NLRP3/CIAS1 9 2 3 33

DOCK8 deficiency DOCK8 1 0 0

EDA-ID NEMO 1 1 100

Griscelli type 2 RAB27A 3 3 100

HAE SERPING1 13 3 6 46

HAE type IIIa 17 0 0

HLH Perforin 20 1 5

UNC13D 1 5

STXBP2 0 0

STX11 0 0

HIM-XL CD40L 12 2 3 25

HIM AICDA 4 0 0

UNG 0

AUG 0

CD40 0

Hyper IgE STAT3 9 4 44

IPEX FoxP3 1 0 0

LPD-AR (EBV driven) ITK 1 0 0

LPD-XL (XLP) SH2D1A 32 9 1 3

BIRC4 1 3

Netherton syndrome SPINK5 1 0 0

Periodic fever syndrome MEFV 11 2 18

MVK 0 0

Properdin deficiency properdin 1 0 0

SCID-AR JAK3 2 2 1 11

RAG1 & 2 3 0 0

ADA 0 0 0

LIG4 1 0 0

Artemis 1 0 0

Cern. Factorc 1 0 0

IL-7R 1 0 0

SCID-XL IL2-RG 4 1 2 50

SDS SBDS 1 2 1 100

TRAPS TNFRSF1A 19 2 11
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was initially suspected by the almost complete absence 
of peripheral blood B cells. XLA patients were tested 
to establish the exact mutation in the Bruton’s tyrosine 
kinase (BTK) gene to complete their laboratory profiles. 
The genetic results did not immediately affect patient 
management since these patients were already on intra-
venous or subcutaneous immunoglobulin therapy. Iden-
tification of the mutation has profound implications for 
carrier female family members considering preimplanta-
tion genetic diagnosis or chorion villus sampling.

The rates of genetic diagnoses were lowest for some 
conditions with locus heterogeneity. The genotype-phe-
notype correlation is poor for patients with suspected 
HLH, aHUS or periodic fever syndromes (Table 1). Fur-
thermore, some disorders may have a phenocopy such as 
patients with anti-Factor H antibodies leading to aHUS 
[17]. This can contribute to a lower frequency of genetic 
diagnosis in some disorders.

Protein-based assays can be useful for investigating 
patients without confirmed genetic diagnoses in other 
conditions. Our cohort of 7 patients suspected of ALPS 
did not have detectable germline FAS mutations. cDNA 
analyses indicated productive FAS gene expression. Two 
patients are likely to have ALPS based on clinical pres-
entation, presence of elevated double negative alpha beta 
positive T cells and defective apoptotic cell function. 
Assessment of germline FasL gene and FAS gene on sorted 
double negative T cells in patients without FAS mutations 
could further strengthen our testing strategy in the future.

Discussion
We have tabulated our patient results according to the 
suspected genetic diagnosis and the mutations identified 
(Tables 1, 2). The PID cases we encountered were varied 

akin to those elsewhere, albeit at a lower number due to 
New Zealand’s small population size.

Our data supports a flexible diagnostic strategy, based 
on the clinical presentation. Sanger sequencing can be 
undertaken in cases with a well characterised phenotype 
such as XLA. In contrast, the genetic causes have been 
poorly characterised in HLH [18]. This makes genetic 
testing difficult and is a strong argument for NGS with 
gene panels, as well as screening with functional studies.

Our study has shown there are however some examples 
of locus heterogeneity where Sanger sequencing can be 
useful. Five causative genetic defects have been identi-
fied in patients with CGD (Table 2). Clinical data includ-
ing family history and relative severity may offer clues to 
the nature of the affected gene. An X-linked inheritance 
pattern might suggest CYBB gene mutations, while a rel-
atively mild phenotype might suggest a mutation in the 
NCF1 gene. This illustrates the value of close collabora-
tion between requesting clinicians and the laboratory.

Our experience has shown that variants of unknown 
clinical significance (VUS) can be a major problem. 
Patients should undergo genetic counselling before test-
ing so their expectations can be managed. Testing may 
not identify the causative gene in all patients and the 
presence of VUS can place both patient and referring 
physician in a difficult position. As described below, VUS 
will become a much more significant problem with the 
advent of NGS.

It is clear there will be major changes in genetic test-
ing strategies in the near future. The approach to genetic 
testing described here can be time consuming and expen-
sive. Traditionally clinicians undertake serial testing of 
candidate genes or order a gene panel. As shown here the 
diagnostic rates are lower for most conditions for which 

Table 1  continued

Test Genes Patients Carriers? Index patients tested positiveb % tested positive

UNC93b deficiency UNC93b 1 0 0

WAS WASP 10 5 50

WHIM syndrome CXCR4 1 0 0

XLA BTK 11 4 8 73

Total 228 30 53 23

aHUS atypical haemolytic uremic syndrome; ALPS autoimmune lymphoproliferative syndrome; APECED autoimmune polyendocrinopathy type 1; CGD-XL X-linked 
chronic granulomatous disease; CGD-AR autosomal recessive chronic granulomatous disease; CHARGE coloboma, heart defect, atresia choanae, retarded growth and 
development, genital abnormality, and ear abnormality; CAPS cryopyrin-associated periodic syndrome; EDA-ID ectodermal dysplasia and immunodeficiency; HAE 
hereditary angioedema; HAE type III type 3 hereditary angioedema; HLH hemophagocytic lymphohistiocytosis; HIM-XL hyper immunoglobulin M syndrome, X-linked; 
HIM hyper immunoglobulin M syndrome; IPEX immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome; LPD-AR lymphoproliferative disorder, 
autosomal recessive; LPD-XL lymphoproliferative disorder, X-linked; SCID-AR autosomal recessive severe combined immune deficiency; SCID-XL X-linked severe 
combined immune deficiency; SDS Shwachman-Diamond syndrome; TRAPS TNF receptor-associated periodic syndrome; WAS Wiskott-Aldrich syndrome; WHIM warts, 
hypogammaglobulinemia, infections, and myelokathexis; XLP X-linked lymphoproliferative syndrome; XLA X-linked agammaglobulinemia
a  DNA from patients with suspected factor XII mutation were sent to Sonic laboratories in Sydney
b  Mutations of genes tested positive for disorders were described in Table 2
c  Cernunnos factor
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there is locus heterogeneity. NGS offers a possible solu-
tion for such conditions.

We have gained experience with WES in the last five 
years. Patients with undiagnosed B cell deficiencies were 
offered the opportunity to participate in our common var-
iable immunodeficiency disorder (CVID) research pro-
gram. Patients were accepted for the study if they fulfilled 
the Ameratunga et al. criteria for CVID [14, 19, 20]. Writ-
ten consent was sought prior to enrolment in the project.

Two kindreds enrolled in the CVID program under-
went WES trio analyses resulting in confirmed diagnoses 
[21]. These genetic defects would not have been discov-
ered by targeted NGS since these genes were previously 
not described in PID patients. It is likely many CVID 
cases will not have a genetic diagnosis following targeted 
NGS [22]. We have not offered routine diagnostic testing 
for CVID partly due to its locus heterogeneity and vari-
able clinical phenotypes due to unknown environmental 

Table 2  Mutations detected in patients referred to the service (2005–2014)

Test Genes Mutation References

aHUS/C3 glomerulopathy MCP, CFH, CFI CFH: c.3120delT, F960Xfs
MCP: c.995_996delAG, S274fsX284

[7, 29]

CGD-XL NCF1 c.87_88delGT, c.271G > A (V25FsX51, R90H) (2 patients)
no NCF1 gene, only pseudogene present (2 patients)

[30, 31]

CGD-AR CYBB c.1461 + 1G > A, IVS11 + 1G > A
deletion of exons 9–13
c.987C > A, C329X

[32, 33]

CAPS NLRP3/CIAS1 c.913G > A, D305 N
c.2113C > A, Q705 K
c.920T > C, L307P

[34, 35]

EDA-ID NEMO c.742G > C, A162P [36]

Griscelli type 2 RAB27A c.550C > T, R184X [37]

HAE C1-INH/serping1 c.188C > T, S63F
c.539A > C, Q180P
c.1342G > T, E488X
c.1396C > T, R466C
c.1089delG, K364fsX32
c.1034_1035insCCAC, Q346fsX369

[38–41]

HLH perforin, UNC13D perforin: c.272C > T (A91 V),
UNC13D: c.175G > A (A59T)

[42]

HIM-XL CD40L c.475G > A, W140X
c.147delG, R49fsX53

[43]

Hyper-IgE STAT3 c.2115C > T, Q633X
c.1909G > A, V637 M
c.1235C > A, T412 N
c.2134G > C, V712L

[44, 45]

Periodic fever syndrome MEFV, MVK MEFV: c.442G > C, c.1105C > T (E148Q, P369S)
MEFV: c.1105C > T, c.1223G > A (P369S, R408Q)

[46, 47]

SCID-AR JAK3 c.1351C > T, c.2148G > A (R451X, W716X) [48]

SCID-XL IL2-RG c.677G > A, R226H
c.196A > C, Q61P

[49]

SDS SDSP c.184A > T (K62X), 258 + 2T > C (IVS2 + 2T > C) [50, 51]

TRAPS TNFRSF1A c.362G > A, R121Q (low penetrance SNP, 2 patients) [52]

WAS WASP c.431G > A, E133 K (2 patients)
c.257G > A, R86H
c.523_524delAG, R156fsX167
c.134C > T, R38X

[53–55]

XLP SH2D1A, BIRC4 SH2D1A: c.261delT, Q88fsX95
BIRC4: c.598_600delTGC, C200del

[56, 57]

XLA BTK c.1691G > A, R520Q (2 patients)
c.1100C > A, A367E
c.1906_1908GAG > TTT, E636F
c.1581_1584delTTTG, C527fsX528 (2 patients)
1567-2A > C (IVS15-2A > C)
776 + 1G > A (IVS8 + 1G > A)

[58, 59]
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and genetic factors. Furthermore, the significance of 
sequence variations in genes encoding molecules such as 
TACI and BAFFR are uncertain [20, 23].

If a patient presents with a disorder such as HLH, there 
is a reasonable argument for undertaking WES as the 
first test. If a defective gene is not found, patients could 
be referred for gene discovery using WES and/or whole 
genome sequencing (WGS) with appropriate consent 
after ethics approval. We are thus adapting our testing 
strategy to the phenotype of the patient and the family.

Risk alleles add a further level of complexity to diag-
nostic testing for aHUS. Several studies have shown that 
sequence variants of complement-associated proteins 
can predispose to aHUS [17]. The precise risk is uncer-
tain but significantly complicates decisions regarding 
renal transplantation. These alleles could be analysed 
as part of a WES panel. Unfortunately, many countries 
including New Zealand cannot afford the extremely high 
cost of eculizumab, which is very effective in treating and 
preventing aHUS exacerbations. It is hoped that cheaper 
biosimilars will become available in the near future. This 
may reduce the critical importance of genetic testing for 
aHUS.

NGS however has significant limitations, which must 
be appreciated before introduction into a routine diag-
nostic laboratory. At this time WES cannot identify large 
deletions or complex mutations. Coverage issues can 
lead to either false positive or false negative results. WGS 
overcomes many of these technical limitations but is not 
widely available for diagnostic purposes at this time. A 
WGS CVID study highlighted the complexity of CVID 
as a polygenic disorder [24]. Considerable expertise and 
time is required for WGS bioinformatic analysis and is 
presently beyond the capability of a routine diagnostic 
laboratory. Patients could enrol in a WGS research pro-
gram if Sanger and targeted NGS failed to yield conclu-
sive results. In these cases, the diagnosis rate is 8% (K. 
Gilmour, personal communication, October 14, 2016).

Targeted gene sequencing could potentially serve as 
an interim solution for diagnostic purposes. Targeted 
NGS or gene panels are less complicated and laborious 
than WES or WGS. The diagnostic rate for unsolved 
cases using gene panels have been reported in the range 
of 15–25% [22, 25–27]. Most of these cases were atypi-
cal clinical presentations of known PIDs. The main dis-
advantage of this strategy is the requirement to update 
gene panels and to modify the target gene enrichment 
process when new PID genes are listed in the latest IUIS 
PID classification.

In spite of its limitations, WES provides a cost effec-
tive solution to rapidly sequence large numbers of genes. 
Maffucci et al. [28] demonstrated the utility of WES and 

targeted gene filtering in achieving 30% success rate in a 
cohort of 50 well characterised CVID patients.

A clinical exome approach with a flexible PID gene 
filtering and analysis strategy is better suited for a small 
country such as New Zealand since updating targeted 
NGS gene panels can be expensive and time consuming. 
The gene filters allow streamlined searches for disease-
causing variants and could be periodically updated for 
in silico investigation as new gene discoveries are made. 
Our laboratory is in the process of introducing gene pan-
els for various phenotypes. Gene panels are being created 
for SCID, HLH, aHUS and other disorders with locus 
heterogeneity. It is hoped turnaround time can be short-
ened once these tests are undertaken in New Zealand.

It is also important to periodically review patients 
for whom a genetic diagnosis has not been established. 
As seen in Table  1 there were many requests for XLP 
in patients with severe EBV infections. Some of these 
patients may have one of the recently described “EBVopa-
thies” such as mutations of CTLA4. Such patients with-
out a genetic diagnosis after initial Sanger sequencing, 
could be offered NGS for gene discovery after the appro-
priate consent.

Conclusions
We conclude the customised diagnostic PID genetic test-
ing service has allowed us to rapidly undertake genetic 
testing when requested. Genetic testing will become 
more complex with NGS, as multiple sequence variants 
will be identified. Continued close involvement of refer-
ring clinicians in the testing process will be paramount. 
Regular meetings with requesting clinicians and analysis 
of other protein-based data will be crucial in determining 
the significance of these genetic variants.
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