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Enhanced interleukin‑8 production 
in mononuclear cells in severe pediatric 
obstructive sleep apnea
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Abstract 

Background:  Obstructive sleep apnea (OSA) is a risk factor for cardiovascular disease, metabolic disorders, and 
cognitive dysfunction. Current thinking links chronic intermittent hypoxia (CIH) with oxidative stress and systemic 
inflammation. However, the sequence of events leading to the morbidities associated with OSA is poorly understood 
in children. Monocytes are known to be altered by chronic hypoxia. Thus in this prospective study, we investigated 
inflammatory cytokine profiles from cultures of peripheral blood mononuclear cells (PBMC) obtained from children 
with severe OSA and sleep-related CIH.

Methods:  Ten children with OSA (cases) and 5 age-matched children without OSA (controls) were recruited for study. 
Samples of plasma and PBMC were obtained before and after adenotonsillectomy. The levels of the inflammatory 
cytokines, interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12p70, and tumor necrosis factor-α (TNFα), were measured in both 
plasma and ex vivo culture supernatants of PBMC incubated with lipopolysaccharide (LPS) using the cytometric bead 
assay.

Results:  Upon activation of PBMC by LPS, the levels of IL-8 in the culture supernatants from cases were threefold 
higher than in controls. The levels of the other cytokines including IL-1β, IL-6, and TNFα, in culture supernatant of 
PBMC from cases showed no difference from controls; nor were there significant differences in plasma cytokine levels.

Conclusion:  We speculate that in young children with sleep-related CIH, an enhanced production capacity of IL-8 
precedes the development of systemic inflammatory markers. Future work should evaluate IL-8 production capacity 
as a potential biomarker for OSA severity.
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Introduction
Severe obstructive sleep apnea (OSA) is characterized 
by repetitive episodes of disrupted breathing during 
sleep and recurrent decreases in blood oxygen saturation 
[1]. Untreated, severe OSA has important sequelae that 
negatively impact the well being and school performance 
of children [2–4]. The most common cause of severe 
pediatric OSA is adenotonsillar hypertrophy and 
adenotonsillectomy (T&A) remains the recommended 

first line treatment [5]. The indication for T&A in milder 
forms of OSA is controversial as the surgery itself is 
associated with both morbidity and mortality [6, 7]. A 
reliable biomarker for OSA severity could inform clinical 
decisions.

A hallmark of severe OSA is sleep-related chronic 
intermittent hypoxia (CIH). CIH can lead to systemic 
inflammation in animal models and in patients with OSA 
[8–10]. Indeed, in both adult and pediatric patients, an 
upregulation of prototypic inflammatory cytokines such 
as tumor necrosis factor-α (TNFα) and interleukin-6 
(IL-6), arising from activation of the nuclear factor κB 
(NFκB) pathway, is reported in OSA [11]. The notion that 
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OSA is a low grade chronic inflammatory disease has 
been suggested [12].

Clinical studies have focused on the association 
between plasma/serum biomarkers and OSA severity 
or outcomes [11, 13]. The role of cellular alteration(s) 
in severe OSA has been less explored, although cells 
such as monocytes are known to be susceptible to 
hypoxia [14, 15]. Thus, we assessed the production of 
classic inflammatory cytokines in ex  vivo cultures of 
isolated peripheral blood mononuclear cells (PBMC) 
obtained from children with severe OSA who exhibited 
sleep-related CIH. We employed a sensitive cytometric 
bead array to simultaneously detect six inflammatory 
mediators, namely TNFα, IL-6, IL-8, IL-10, IL-1β and 
IL-12p70 before and following T&A.

Materials and methods
Subjects
The study was approved by the Research Institute of the 
McGill University Health Centre/Montreal Children’s 
Hospital (Study #13-427-PED) and was conducted in 
accordance with Good Clinical Practice Guidelines and 
Standard Operating Procedures. Informed parental 
consent was obtained as well as verbal assent, when 
applicable, from the child for blood procurement. A 
convenience sample of 10 children undergoing T&A 
(cases) and 5 age-matched controls (controls) was 
recruited between September 2014 and December 2015.

We recruited children with clinical and laboratory 
findings consistent with severe OSA. Inclusion criteria 
for cases were (1) symptoms of OSA and sleep-related 
CIH, and (2) an elective T&A performed before noon. 
Inclusion criteria for the controls were (1) an elective 
insertion of pressure equalizing tubes for chronic otitis 
media, (2) a negative history for symptoms of OSA, and 
(3) surgery scheduled before noon.

Exclusion criteria included acute tonsillitis, a 
history of cardiorespiratory, neurologic, craniofacial, 
immunodeficiency, or genetic disorders, a recent 
course of systemic steroids, daily inhaled or nasal 
corticosteroids.

Blood procurement in cases and controls was 
performed immediately following induction of 
anesthesia. It is our practice to re-evaluate the sleep 
related breathing in children with severe OSA following 
T&A. At this follow-up visit blood procurement was 
performed in the McGill University Health Center 
(MUHC) Pediatric Center for Innovative Medicine. 
Controls were not re-evaluated following surgery. 
Blood samples were sent to the central laboratory for 
the measurement of serum levels for C-reactive protein 
(CRP), erythropoietin, and complete blood count (CBC).

Clinical data were collected for age, weight, height, 
and gender. Body mass index was calculated as weight 
in kilograms divided by height in meters squared. 
Evaluation of OSA severity included the administration of 
a sleep disordered breathing quality of life questionnaire 
(SDBQoL). A nocturnal pulse oximetry study was also 
performed and used to determine the number of 4% dips 
in saturation from baseline, the nadir saturation (nSAT), 
and the McGill Oximetry Score (MOS). The MOS 
classified the severity of CIH according to the frequency 
and depth of desaturation events. Both the MOS3 
and MOS4 classifications, having recurrent drops in 
hemoglobin saturation to < 80% and < 85%, respectively, 
were consistent with severe sleep-related CIH and a 
diagnosis of severe OSA [16].

Isolation and stimulation of peripheral blood mononuclear 
cells (PBMC)
PBMC were isolated from heparinized whole blood by 
density gradient centrifugation (Ficoll-Paque PLUS, GE 
Healthcare Bio-science AB, Uppsala, Sweden) within 4 h 
following blood collection. Two mL of plasma samples 
were obtained and stored in microcentrifuge tubes 
at − 80  °C. The PBMC were stimulated in  vitro with 
lipopolysaccharides (LPS, 10  µg/mL, Sigma-Aldrich, 
Oakville, Ontario, Canada) at 37  °C in the presence of 
normoxia and 5% CO2 for 24  h. Culture supernatants 
were collected by centrifugation and stored at − 80  °C 
prior to use. Unstimulated PBMC were used to determine 
baseline cytokine production.

Determination of cytokine production using cytometric 
bead array
Cytokine levels in plasma and culture supernatants 
were determined by flow cytometry using the 
Human Inflammatory Cytometric Bead Array kit 
(BD Biosciences, Mississauga, Ontario, Canada). The 
fluorescence associated with the antibody-coated beads 
was captured using a BD FACS Canto-II flow cytometer 
(BD Biosciences) according to the manufacturer’s 
instruction and data analyzed using FCAP Array software 
v3.0 (BD Biosciences). The kit allows for simultaneous 
quantification of 6 inflammatory cytokines (IL-1β, 
IL-6, IL-8, IL-12p70, IL-10, and TNFα) with sensitivity 
comparable to that of conventional ELISA. If the readout 
reached the upper limits of detection, additional dilutions 
were performed and the assay repeated. If the readout 
was below the detection limit, the value was arbitrarily 
set to half the lower detection limit.

Statistical analysis
Data analysis was performed with Graphpad Prism 
version 5.0 for Windows, (Graphpad Software, La Jolla 
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California USA, http://www.graph​pad.com). Clinical 
data were described with the mean ± standard error. 
Assay data were described with the median, minimum, 
and maximum. Differences between the case and 
control groups were assessed with Student’s t test for 
clinical data; Mann–Whitney U tests for cytokine levels. 
Differences before and after T&A were assessed with 
Wilcoxon paired test. A p value < 0.05 defined statistical 
significance.

Results
Cases
The reason(s) given for seeking medical attention were 
snoring ± frequent nocturnal awakenings ± witnessed 
apnea ± difficulty breathing during sleep. In addition 
to the above, two parents reported recurrent tonsillitis. 
The SDBQoL score ranged from 49 to 103, indicating 
a moderate to large impact of daily life. Tonsillar 
enlargement ranged from 2+ to 4+. Before T&A, 8 cases 
had MOS4; 2 had MOS3. The interval between T&A and 
follow-up was 82  days (minimum 49, maximum 142). 

One case did not return for follow-up; two additional 
cases declined verbal assent for blood procurement. 
Parents reported an improvement in symptoms. 
Re-evaluation of sleep disordered breathing was 
performed in 5 cases. The SDBQoL scores ranged from 
21 to 38, indicating a small impact on daily life and the 
overnight pulse oximetry result was MOS1.

Controls
The reason(s) given for seeking medical attention were 
recurrent otitis media and/or hearing loss.

Controls were older and heavier than cases. The CRP 
levels were within the normal range except for one case 
(46.7  mg/L) and one control (6.8  mg/L). The leukocyte 
counts and differentials showed no differences between 
cases and controls (Table 1).

Plasma cytokine levels
Preoperative plasma inflammatory cytokines were 
evaluated in 8 cases. At follow-up samples were obtained 
in only three. All measured levels of inflammatory 

Table 1  Demographic and clinical laboratory data of cases and controls

Italics values indicate p < 0.05

CRP C-reactive protein, DI4 desaturation index 4%, EPO erythropoietin, IL interleukin, LPS lipopolyssacharide, PBMC peripheral blood mononuclear cells, na not 
applicable, nd not detected, nSAT nadir saturation, TNFα tumor necrosis factor alpha

Variable Cases (n = 10) Controls (n = 5) p value

Age (years) 2.7 ± 0.4 4.0 ± 0.6 0.07

Weight (kg) 13.1 ± 0.5 19.4 ± 2.1 0.001

BMI (kg/m2) 15.4 ± 0.6 16.5 ± 1.0 0.37

Gender (boys) 9 5 na

Ethnicity

 Caucasian 5 4 na

 Black 5 1

nSAT (%) 72.6 ± 1.5 91.3 ± 2.3 < 0.0001

DI4 (events per hour) 26.9 ± 14.2 (n = 9) 1.5 ± 2.1 (n = 3) na

Clinical lab testing

 CRP mg/L (normal range 0.0–5.0) 5.7 ± 4.6 1.8 ± 1.3 0.56

 EPO mIU/mL (normal range 2.6–18.5) 8.1 ± 1.3 na na

 Hemoglobin g/L (normal range 105–135) 114.5 ± 2.7 124.2 ± 1.7 0.03

Leukocyte counts and differentials

 White blood cells (× 106) 10.5 ± 1.2 9.5 ± 0.4 0.53

 Polymorphonuclear cells (%) 32.2 ± 3.3 39.8 ± 4.5 0.20

 Lymphocytes (%) 54.6 ± 3.2 49.4 ± 4.5 0.36

 Monocytes (%) 10.1 ± 0.7 8.2 ± 0.5 0.09

Cytokine production capacity in PBMC stimulated with LPS (pg/mL) median (min, max)

 IL-1β 1360 (346; 3510) 4220 (1660; 5630) 0.08

 IL-6 3190 (946; 18,000) 7000 (3340; 12,100) 0.13

 IL-8 39,000 (11,000; 266,000) 12,100 (6330; 32,600) 0.03

 IL-10 47 (2; 358) 304 (100; 336) 0.11

 IL-12p70 nd nd na

 TNFα 277 (124; 745) 444 (183; 734) 0.21

http://www.graphpad.com
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cytokines were low, both before (n = 8) and after (n = 3) 
T&A. Plasma cytokine levels were not measured in 
controls.

IL‑8 production by LPS stimulated PBMC was augmented 
in children with OSA
Upon LPS stimulation, the concentrations of cytokines 
in PBMC culture supernatants were increased compared 
to unstimulated PBMC cultures; with the exception 
of IL-12p70. The extent of this increase varied. The 
stimulated IL-8 levels were threefold higher in cases 
(39,000 pg/mL) than controls (12,100 pg/mL) (p < 0.028) 
(Table  1) and IL-8 remained elevated at follow-up 
(Fig.  1a). In contrast, the LPS stimulated cytokine 
production capacity for IL-1β, IL-6, IL-10, and TNFα 
tended to be lower in cases compared with controls; 
differences were not statistically different. At follow-up 
cytokine production capacity for IL-1β, IL-6, IL-10, and 
TNFα tended to increase (Fig. 1b).

Discussion
Children with a high MOS have severe OSA as quantified 
by polysomnographic criteria: the apnea–hypopnea 
index (AHI), the desaturation index (DI4), the respiratory 
arousal index (RAI), and the nSAT. A MOS3 correlates 
with a 95% confidence interval for AHI of 8.5 to 18.1; 
DI4 of 7.8 to15.1; RAI of 5.2 to 12.5; and nSAT of 77.7 to 
84.2%. A MOS4 correlates with a 95% confidence interval 
for AHI of 26.5 to 53.3; DI4 of 26.3 to 53.7; RAI of 12.8 
to 31.3; and nSATof 54.3 to 64.1% [16]. As DI4 is highly 

correlated with AHI [17], the values reported for cases 
in Table  1 as well as the clinical evaluation support a 
diagnosis of severe OSA. The major finding in this study 
was the selective elevation in the production capacity of 
IL-8 in children with sleep-related CIH, compared with 
controls.

Systemic inflammation has been linked to the 
development of cardiovascular, metabolic and 
neurocognitive sequalae of OSA [4, 10]. Increases in IL-6, 
TNFα and CRP, and a decrease in IL-10 in children with 
OSA are reported; all levels normalizing following T&A 
[10, 13, 18, 19]. A systematic review of 51 adult studies 
reported higher serum levels of proinflammatory markers 
in patients with OSA [11]. Both findings support the 
notion that OSA promotes a low intensity inflammatory 
state [12].

Although the cases exhibited disturbed sleep and sleep-
related CIH, consistent with a diagnosis of severe OSA, 
the plasma levels of inflammatory cytokines were low as 
were the levels of TNFα and IL-1β, in PBMC cultured 
without LPS stimulation. Thus, there was no evidence 
of a systemic inflammatory response in these young 
children. In contrast Gozal et al. [10] reported a systemic 
inflammatory response in children with OSA. However 
the children in our study were younger (2.7 versus 
6.5  years), had higher obstructive apnea indices (DI4 
of 26.9 versus AHI of 13.3) and lower nadir saturations 
(72.6% versus 77.9%). Both age and the severity of 
sleep-related CIH are potential factors influencing IL-8 
production capacity. We were not able to evaluate them 

Fig. 1  Median cytokine production capacity (pg/mL) after 24 h of incubation with lipopolysaccharide (LPS) in ex vivo cultures of isolated 
peripheral blood mononuclear cells in cases and controls. a Compares cases (n = 10) and controls (n = 5). b Compares cases (n = 7) pre and post 
adenotonsillectomy (T&A). Error bars represent the minimum and maximum values. IL interleukin, TNFα tumor necrosis factor alpha. *p < 0.05
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as the small sample size precluded an adjusted statistical 
analysis. Their potential effects were mitigated by 
restricting the evaluation to young children with severe 
sleep-related CIH.

The finding that PBMCs stimulated with LPS for 24 h 
had a selective threefold increase in IL-8 production 
capacity in cases suggests a persistent, change in 
mononuclear cell function that was independent of 
activation of the NFκB pathway. IL-8 is a chemokine that 
plays a critical role in the host immune response and 
also in angiogenesis [20]. Metinko et  al. reported that 
under conditions of anoxic preconditioning and oxidative 
stress IL-8 production in monocytes increased [15]. In 
the current study, although cultured under normoxic 
conditions, the PBMC samples were obtained from 
children exhibiting severe sleep-related CIH. Thus the 
circulating mononuclear cells were preconditioned with 
CIH. We speculate that the increased IL-8 production 
capacity was influenced by this stimulus; although the 
molecular pathways linking sleep-related CIH and 
IL-8 production remain to be elucidated. Alternate 
explanations for the increased IL-8 production capacity 
are also possible, such as the stimuli leading to tonsillar 
enlargement.

Conclusion
The profiles of proinflammatory markers from cultures 
of isolated PBMC may represent an early event in the 
development of the systemic response to severe OSA 
and sleep-related CIH. Such profiles have been little 
studied in young children. A better understanding of 
the pathophysiology leading to the development of OSA 
would facilitate the identification of clinically relevant 
biomarkers for OSA severity in children.
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