Anandan C, Nurmatov U, van Schayck OC, Sheikh A. Is the prevalence of asthma declining? Systematic review of epidemiological studies. Allergy. 2010;65(2):152–67.
Article
CAS
PubMed
Google Scholar
Gibson GJ, Loddenkemper R, Sibille Y, Lundback B. The European lung white book: respiratory health and disease in Europe. Sheffield: European Respiratory Society; 2013.
Google Scholar
Barnett SB, Nurmagambetov TA. Costs of asthma in the United States: 2002–2007. J Allergy Clin Immunol. 2011;127(1):145–52.
Article
PubMed
Google Scholar
Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16(1):45–56.
Article
CAS
PubMed
Google Scholar
Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009;180(5):388–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bigler J, Boedigheimer M, Schofield JPR, Skipp PJ, Corfield J, Rowe A, et al. A severe asthma disease signature from gene expression profiling of peripheral blood from U-BIOPRED cohorts. Am J Respir Crit Care Med. 2017;195(10):1311–20.
Article
CAS
PubMed
Google Scholar
Shin SW, Oh TJ, Park SM, Park JS, Jang AS, Park SW, et al. Asthma-predictive genetic markers in gene expression profiling of peripheral blood mononuclear cells. Allergy Asthma Immunol Res. 2011;3(4):265–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hakonarson H, Bjornsdottir US, Halapi E, Bradfield J, Zink F, Mouy M, et al. Profiling of genes expressed in peripheral blood mononuclear cells predicts glucocorticoid sensitivity in asthma patients. Proc Natl Acad Sci USA. 2005;102(41):14789–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diamant Z, Gauvreau GM, Cockcroft DW, Boulet LP, Sterk PJ, de Jongh FH, et al. Inhaled allergen bronchoprovocation tests. J Allergy Clin Immunol. 2013;132(5):1045–1055.e6.
Article
CAS
PubMed
Google Scholar
Singh A, Yamamoto M, Ruan J, Choi JY, Gauvreau GM, Olek S, et al. Th17/Treg ratio derived using DNA methylation analysis is associated with the late phase asthmatic response. Allergy Asthma Clin Immunol. 2014;10(1):32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Subrahmanyam YV, Yamaga S, Prashar Y, Lee HH, Hoe NP, Kluger Y, et al. RNA expression patterns change dramatically in human neutrophils exposed to bacteria. Blood. 2001;97(8):2457–68.
Article
CAS
PubMed
Google Scholar
Hinkle DE, Wiersma W, Jurs SG. Applied statistics for behavioural sciences. Boston: Houghton Mifflin; 2003.
Google Scholar
Bondar G, Cadeiras M, Wisniewski N, Maque J, Chittoor J, Chang E, et al. Comparison of whole blood and peripheral blood mononuclear cell gene expression for evaluation of the perioperative inflammatory response in patients with advanced heart failure. PLoS ONE. 2014;9(12):e115097.
Article
PubMed
PubMed Central
CAS
Google Scholar
Debey S, Schoenbeck U, Hellmich M, Gathof BS, Pillai R, Zander T, et al. Comparison of different isolation techniques prior gene expression profiling of blood derived cells: impact on physiological responses, on overall expression and the role of different cell types. Pharmacogenom J. 2004;4(3):193–207.
Article
CAS
Google Scholar
Feezor RJ, Baker HV, Mindrinos M, Hayden D, Tannahill CL, Brownstein BH, et al. Whole blood and leukocyte RNA isolation for gene expression analyses. Physiol Genomics. 2004;19(3):247–54.
Article
CAS
PubMed
Google Scholar
Min JL, Barrett A, Watts T, Pettersson FH, Lockstone HE, Lindgren CM, et al. Variability of gene expression profiles in human blood and lymphoblastoid cell lines. BMC Genomics. 2010;11:96.
Article
PubMed
PubMed Central
CAS
Google Scholar
Palmer C, Diehn M, Alizadeh AA, Brown PO. Cell-type specific gene expression profiles of leukocytes in human peripheral blood. BMC Genomics. 2006;7:115.
Article
PubMed
PubMed Central
CAS
Google Scholar
Joehanes R, Johnson AD, Barb JJ, Raghavachari N, Liu P, Woodhouse KA, et al. Gene expression analysis of whole blood, peripheral blood mononuclear cells, and lymphoblastoid cell lines from the Framingham Heart Study. Physiol Genomics. 2012;44(1):59–75.
Article
CAS
PubMed
Google Scholar
Robinson MD, Speed TP. A comparison of Affymetrix gene expression arrays. BMC Bioinform. 2007;8:449.
Article
CAS
Google Scholar
Sakharkar MK, Chow VT, Kangueane P. Distributions of exons and introns in the human genome. Silico Biol. 2004;4(4):387–93.
CAS
Google Scholar
Ray N, Kuwahara M, Takada Y, Maruyama K, Kawaguchi T, Tsubone H, et al. c-Fos suppresses systemic inflammatory response to endotoxin. Int Immunol. 2006;18(5):671–7.
Article
CAS
PubMed
Google Scholar
Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA. Interleukin-32: a cytokine and inducer of TNFalpha. Immunity. 2005;22(1):131–42.
CAS
PubMed
Google Scholar
Lauterbach H, Bathke B, Gilles S, Traidl-Hoffmann C, Luber CA, Fejer G, et al. Mouse CD8alpha+ DCs and human BDCA3+ DCs are major producers of IFN-lambda in response to poly IC. J Exp Med. 2010;207(12):2703–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Proost P, Menten P, Struyf S, Schutyser E, De Meester I, Van Damme J. Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78beta into a most efficient monocyte attractant and CCR1 agonist. Blood. 2000;96(5):1674–80.
Article
CAS
PubMed
Google Scholar
Gomez-Martin D, Diaz-Zamudio M, Galindo-Campos M, Alcocer-Varela J. Early growth response transcription factors and the modulation of immune response: implications towards autoimmunity. Autoimmun Rev. 2010;9(6):454–8.
Article
CAS
PubMed
Google Scholar
Wu Z, Macneil AJ, Junkins R, Li B, Berman JN, Lin TJ. Mast cell FcepsilonRI-induced early growth response 2 regulates CC chemokine ligand 1-dependent CD4+ T cell migration. J Immunol (Baltimore, Md: 1950). 2013;190(9):4500–7.
Article
CAS
Google Scholar
Du N, Kwon H, Li P, West EE, Oh J, Liao W, et al. EGR2 is critical for peripheral naive T-cell differentiation and the T-cell response to influenza. Proc Natl Acad Sci USA. 2014;111(46):16484–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cruz-Guilloty F, Pipkin ME, Djuretic IM, Levanon D, Lotem J, Lichtenheld MG, et al. Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J Exp Med. 2009;206(1):51–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernvik E, Halldéen G, Hed J, Lundahl J. Intracellular and surface distribution of CD9 in human eosinophils. Apmis. 1995;103(7–8):699–706.
Article
CAS
PubMed
Google Scholar
Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13(4):227–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–42.
Article
PubMed
CAS
Google Scholar
Chapoval SP, David CS. CD28 costimulation is critical for experimental allergic asthma in HLA-DQ8 transgenic mice. Clin Immunol (Orlando, Fla). 2003;106(2):83–94.
Article
CAS
Google Scholar
Redmond WL, Ruby CE, Weinberg AD. The role of OX40-mediated co-stimulation in T-cell activation and survival. Crit Rev Immunol. 2009;29(3):187–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jember AG, Zuberi R, Liu FT, Croft M. Development of allergic inflammation in a murine model of asthma is dependent on the costimulatory receptor OX40. J Exp Med. 2001;193(3):387–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoshino A, Tanaka Y, Akiba H, Asakura Y, Mita Y, Sakurai T, et al. Critical role for OX40 ligand in the development of pathogenic Th2 cells in a murine model of asthma. Eur J Immunol. 2003;33(4):861–9.
Article
CAS
PubMed
Google Scholar
Croft M, So T, Duan W, Soroosh P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev. 2009;229(1):173–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kashiwakura J, Yokoi H, Saito H, Okayama Y. T cell proliferation by direct cross-talk between OX40 ligand on human mast cells and OX40 on human T cells: comparison of gene expression profiles between human tonsillar and lung-cultured mast cells. J Immunol. 2004;173(8):5247–57.
Article
CAS
PubMed
Google Scholar
Di C, Lin X, Zhang Y, Zhong W, Yuan Y, Zhou T, et al. Basophil-associated OX40 ligand participates in the initiation of Th2 responses during airway inflammation. J Biol Chem. 2015;290(20):12523–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL. Cross-talk between activated human NK cells and CD4+ T cells via OX40-OX40 ligand interactions. J Immunol (Baltimore, Md: 1950). 2004;173(6):3716–24.
Article
CAS
Google Scholar
Karulf M, Kelly A, Weinberg AD, Gold JA. OX40 ligand regulates inflammation and mortality in the innate immune response to sepsis. J Immunol (Baltimore, Md: 1950). 2010;185(8):4856–62.
Article
CAS
Google Scholar
Veldman-Jones MH, Brant R, Rooney C, Geh C, Emery H, Harbron CG, et al. Evaluating robustness and sensitivity of the NanoString Technologies nCounter platform to enable multiplexed gene expression analysis of clinical samples. Cancer Res. 2015;75(13):2587–93.
Article
CAS
PubMed
Google Scholar
Malkov VA, Serikawa KA, Balantac N, Watters J, Geiss G, Mashadi-Hossein A, et al. Multiplexed measurements of gene signatures in different analytes using the Nanostring nCounter Assay System. BMC Res Notes. 2009;2:80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Prokopec SD, Watson JD, Waggott DM, Smith AB, Wu AH, Okey AB, et al. Systematic evaluation of medium-throughput mRNA abundance platforms. RNA. 2013;19(1):51–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma SL, Zhang L. Elevated serum OX40L is a biomarker for identifying corticosteroid resistance in pediatric asthmatic patients. BMC Pulm Med. 2019;19(1):66.
Article
PubMed
PubMed Central
Google Scholar
Ezzat MH, Imam SS, Shaheen KY, Elbrhami EM. Serum OX40 ligand levels in asthmatic children: a potential biomarker of severity and persistence. Allergy Asthma Proc. 2011;32(4):313–8.
Article
CAS
PubMed
Google Scholar
Gauvreau GM, Boulet LP, Cockcroft DW, FitzGerald JM, Mayers I, Carlsten C, et al. OX40L blockade and allergen-induced airway responses in subjects with mild asthma. Clin Exp Allergy. 2014;44(1):29–37.
Article
CAS
PubMed
Google Scholar