Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD. Asthma. Nat Rev Dis Primers. 2015;1:15025.
Article
PubMed
PubMed Central
Google Scholar
Lambrecht BN, Hammad H, Fahy JV. The cytokines of asthma. Immunity. 2019;50:975–91.
Article
PubMed
CAS
Google Scholar
Vieira Braga FA, Kar G, Berg M, Carpaij OA, Polanski K, Simon LM, et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med. 2019;25:1153–63.
Article
PubMed
CAS
Google Scholar
Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2018;390:2769–78.
Article
Google Scholar
Barnes EL, Kappelman MD. Do shared exposures link the lungs and gut? Association between asthma and inflammatory bowel disease. Clin Gastroenterol Hepatol. 2017;15:1353–4.
Article
PubMed
Google Scholar
Eliakim R, Rachmilewitz D. Inflammatory bowel disease: the asthma of the intestine? Inflamm Bowel Dis. 1996;2:122–32.
Article
PubMed
CAS
Google Scholar
Kuenzig ME, Barnabe C, Seow CH, Eksteen B, Negron ME, Rezaie A, et al. Asthma is associated with subsequent development of inflammatory bowel disease: a population-based case-control study. Clin Gastroenterol Hepatol. 2017;15:1405-1412.e3.
Article
PubMed
Google Scholar
Peng Y-H, Liao W-C, Su C-H, Chen H-J, Hsia T-C, Chu C-C, et al. Association of inflammatory bowel disease with asthma risk: a nationwide cohort study. Allergy Asthma Proc. 2015;36:e92-98.
Article
PubMed
Google Scholar
Benard A, Desreumeaux P, Huglo D, Hoorelbeke A, Tonnel AB, Wallaert B. Increased intestinal permeability in bronchial asthma. J Allergy Clin Immunol. 1996;97:1173–8.
Article
PubMed
CAS
Google Scholar
Nepomnyashchikh GI, Chernyavskaya GM, Aidagulova SV, Korabel’nikov DI. Ultrastructural changes in cells of the gastric and small intestinal mucosa during bronchial asthma. Bull Exp Biol Med. 2004;137:302–7.
Article
PubMed
CAS
Google Scholar
Cooper PJ. Can intestinal helminth infections (geohelminths) affect the development and expression of asthma and allergic disease? Clin Exp Immunol. 2002;128:398–404.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barnett DJM, Mommers M, Penders J, Arts ICW, Thijs C. Intestinal archaea inversely associated with childhood asthma. J Allergy Clin Immunol. 2019;143:2305–7.
Article
PubMed
Google Scholar
Ivashkin V, Zolnikova O, Potskherashvili N, Trukhmanov A, Kokina N, Dzhakhaya N, et al. Metabolic activity of intestinal microflora in patients with bronchial asthma. Clin Pract. 2019;9:1126.
Article
PubMed
PubMed Central
Google Scholar
Zimmermann P, Messina N, Mohn WW, Finlay BB, Curtis N. Association between the intestinal microbiota and allergic sensitization, eczema, and asthma: a systematic review. J Allergy Clin Immunol. 2019;143:467–85.
Article
PubMed
Google Scholar
Orivuori L, Mustonen K, de Goffau MC, Hakala S, Paasela M, Roduit C, et al. High level of fecal calprotectin at age 2 months as a marker of intestinal inflammation predicts atopic dermatitis and asthma by age 6. Clin Exp Allergy. 2015;45:928–39.
Article
PubMed
CAS
Google Scholar
Momozawa Y, Dmitrieva J, Théâtre E, Deffontaine V, Rahmouni S, Charloteaux B, et al. IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat Commun. 2018;9:1–18.
Article
CAS
Google Scholar
Vancamelbeke M, Vanuytsel T, Farré R, Verstockt S, Ferrante M, Van Assche G, et al. Genetic and transcriptomic bases of intestinal epithelial barrier dysfunction in inflammatory bowel disease. Inflamm Bowel Dis. 2017;23:1718–29.
Article
PubMed
Google Scholar
de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet. 2017;49:256–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Harada N, Iijima S, Kobayashi K, Yoshida T, Brown WR, Hibi T, et al. Human IgGFc binding protein (FcgammaBP) in colonic epithelial cells exhibits mucin-like structure. J Biol Chem. 1997;272:15232–41.
Article
PubMed
CAS
Google Scholar
Lang T, Klasson S, Larsson E, Johansson MEV, Hansson GC, Samuelsson T. Searching the evolutionary origin of epithelial mucus protein components-mucins and FCGBP. Mol Biol Evol. 2016;33:1921–36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GMH, Schütte A, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev. 2014;260:8–20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Johansson MEV, Thomsson KA, Hansson GC. Proteomic analyses of the two mucus layers of the colon barrier reveal that their main component, the Muc2 mucin, is strongly bound to the Fcgbp protein. J Proteome Res. 2009;8:3549–57.
Article
PubMed
CAS
Google Scholar
Albert TK, Laubinger W, Müller S, Hanisch F-G, Kalinski T, Meyer F, et al. Human intestinal TFF3 forms disulfide-linked heteromers with the mucus-associated FCGBP protein and is released by hydrogen sulfide. J Proteome Res. 2010;9:3108–17.
Article
PubMed
CAS
Google Scholar
Kim M, Lee S, Yang S-K, Song K, Lee I. Differential expression in histologically normal crypts of ulcerative colitis suggests primary crypt disorder. Oncol Rep. 2006;16:663–70.
PubMed
CAS
Google Scholar
Stamp LA, Braxton DR, Wu J, Akopian V, Hasegawa K, Chandrasoma PT, et al. The GCTM-5 epitope associated with the mucin-like glycoprotein FCGBP marks progenitor cells in tissues of endodermal origin. Stem Cells. 2012;30:1999–2009.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang G-L, Pan L-L, Huang T, Wang J-H. The transcriptome difference between colorectal tumor and normal tissues revealed by single-cell sequencing. J Cancer. 2019;10:5883–90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kobayashi K, Yagasaki M, Harada N, Chichibu K, Hibi T, Yoshida T, et al. Detection of Fcgamma binding protein antigen in human sera and its relation with autoimmune diseases. Immunol Lett. 2001;79:229–35.
Article
PubMed
CAS
Google Scholar
Rousseau K, Byrne C, Griesinger G, Leung A, Chung A, Hill AS, et al. Allelic association and recombination hotspots in the mucin gene (MUC) complex on chromosome 11p15.5. Ann Hum Genet. 2007;71:561–9.
Article
PubMed
CAS
Google Scholar
Kaneko Y, Nakamura T, Hayama M, Hosaka N, Akamatsu T, Ota H. Altered expression of CDX-2, PDX-1 and mucin core proteins in “Ulcer-associated cell lineage (UACL)” in Crohn’s disease. J Mol Histol. 2008;39:161–8.
Article
PubMed
CAS
Google Scholar
Steenwinckel V, Louahed J, Lemaire MM, Sommereyns C, Warnier G, McKenzie A, et al. IL-9 promotes IL-13-dependent paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa. J Immunol. 2009;182:4737–43.
Article
PubMed
CAS
Google Scholar
Temann UA, Prasad B, Gallup MW, Basbaum C, Ho SB, Flavell RA, et al. A novel role for murine IL-4 in vivo: induction of MUC5AC gene expression and mucin hypersecretion. Am J Respir Cell Mol Biol. 1997;16:471–8.
Article
PubMed
CAS
Google Scholar
Bai CH, Song S-Y, Kim Y-D. The inhibitory effect of the leukotriene receptor antagonist on leukotriene D4-induced MUC2/5AC gene expression and mucin secretion in human airway epithelial cells. Auris Nasus Larynx. 2007;34:203–6.
Article
PubMed
Google Scholar
Ishinaga H, Takeuchi K, Kishioka C, Suzuki S, Basbaum C, Majima Y. Pranlukast inhibits NF-kappaB activation and MUC2 gene expression in cultured human epithelial cells. Pharmacology. 2005;73:89–96.
Article
PubMed
CAS
Google Scholar
Hensel KO, Boland V, Postberg J, Zilbauer M, Heuschkel R, Vogel S, et al. Differential expression of mucosal trefoil factors and mucins in pediatric inflammatory bowel diseases. Sci Rep. 2014;4:7343.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saito Y, Iwatsuki K, Inaba A, Sato M, Tadaishi M, Shimizu M, et al. Interleukin-4 suppresses the proliferation and alters the gene expression in enteroids. Cytotechnology. 2020;72:479–88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stockinger S, Albers T, Duerr CU, Ménard S, Pütsep K, Andersson M, et al. Interleukin-13-mediated paneth cell degranulation and antimicrobial peptide release. J Innate Immun. 2014;6:530–41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ghosh D, Ding L, Bernstein JA, Mersha TB. The utility of resolving asthma molecular signatures using tissue-specific transcriptome data. G3. 2020;10:4049–62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kicic A, Hallstrand TS, Sutanto EN, Stevens PT, Kobor MS, Taplin C, et al. Decreased fibronectin production significantly contributes to dysregulated repair of asthmatic epithelium. Am J Respir Crit Care Med. 2010;181:889–98.
Article
PubMed
PubMed Central
CAS
Google Scholar
van der Flier LG, Haegebarth A, Stange DE, van de Wetering M, Clevers H. OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology. 2009;137:15–7.
Article
PubMed
Google Scholar
Neyazi M, Bharadwaj SS, Bullers S, Varenyiova Z, Oxford IBD Cohort Study Investigators, Travis S, et al. Overexpression of Cancer-Associated Stem Cell Gene OLFM4 in the Colonic Epithelium of Patients With Primary Sclerosing Cholangitis. Inflammatory Bowel Diseases. 2021. https://doi.org/10.1093/ibd/izab025
Welin A, Amirbeagi F, Christenson K, Björkman L, Björnsdottir H, Forsman H, et al. The human neutrophil subsets defined by the presence or absence of OLFM4 both transmigrate into tissue in vivo and give rise to distinct NETs in vitro. PLoS ONE. 2013;8:e69575.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wójcik-Pszczoła K, Chłoń-Rzepa G, Jankowska A, Ślusarczyk M, Ferdek PE, Kusiak AA, et al. A novel, Pan-PDE inhibitor exerts anti-fibrotic effects in human lung fibroblasts via inhibition of TGF-β signaling and activation of cAMP/PKA signaling. Int J Mol Sci. 2020;21:1.
Article
CAS
Google Scholar
Kaser A, Adolph TE, Blumberg RS. The unfolded protein response and gastrointestinal disease. Semin Immunopathol. 2013;35:307–19.
Article
PubMed
PubMed Central
CAS
Google Scholar
Coursey TG, Tukler Henriksson J, Barbosa FL, de Paiva CS, Pflugfelder SC. Interferon-γ–induced unfolded protein response in conjunctival goblet cells as a cause of mucin deficiency in Sjögren syndrome. Am J Pathol. 2016;186:1547–58.
Article
PubMed
PubMed Central
CAS
Google Scholar
McGuckin MA, Eri RD, Das I, Lourie R, Florin TH. ER stress and the unfolded protein response in intestinal inflammation. Am J Physiol-Gastrointest Liver Physiol. 2010;298:G820-32.
Article
PubMed
CAS
Google Scholar
Lee YG, Hong J, Lee PH, Lee J, Park SW, Kim D, et al. Serum calprotectin is a potential marker in patients. J Korean Med Sci. 2020;35:e362.
Article
PubMed
PubMed Central
CAS
Google Scholar